
A Dataflow Framework for Java
and the Checker Framework

Werner Dietl, Michael Ernst, Charlie Garrett, Stefan Heule

University of Washington

Non-Null Type Systems [Fändrich/Leino 03]

• For every type T, introduce two variants

– Non-null variant for references of type T

• @NonNull T

– Possibly-null variant for references of type T and
null

• @Nullable T

• Forbid dereferences of @Nullable types to
prevent null-pointer exceptions

Initialization in Non-Null Type Systems

• During object construction, fields might not be
initialized yet

– Raw types [Fändrich/Leino 03] handle this case
soundly, but conservatively

• Recently, Freedom Before Commitment
[Summers/Müller 11] has been proposed as a
more expressive solution

– Is it useful in practice?

Non-null type system case study

• Annotated SSHTools (38.7k LOC)

• Conclusions

– The expressiveness of FBC compared to raw types
is only useful in very few cases

– Raw types and FBC are closely related and FBC is a
straight-forward extension of raw types

– Flow-sensitivity is very important in practice

Flow-sensitive type system

• Why do we need flow-sensitivity?

@Nullable String s = ...;

s = "abc";

s.toUpperCase();

@Nullable String s = ...;

if (s != null) {

 s.toUpperCase();

}

String s = System.in.readLine();

if (!RegexUtil.isRegex(s)) {

 throw new Error();

}

Pattern.compile(s);

Dereference forbidden

Dereference forbidden

might not be a regular expression

Is Flow-Sensitivity Important?

• Case study with the RegexChecker on the causes
of false positive warnings:
– 80.4% of all false warnings can be avoided by a precise

flow-analysis

 107 flow-sensitivity

 9 partial regex concatenation

 8 tests whether s is a regex

 3 substring

 2 group 1 always exists in regexp

 2 deprecated file

 1 output of escapeNonJava() can appear in a

 character class in a regex

 1 line.separator property is a legal regex

General Dataflow Problem

• Gather information about possible values

– Approximation of semantics of the program

– E.g. constant propagation

• The user decides

– What abstract values should be tracked (e.g.
constants, or types)

– How do operations of the programming language
influence abstract values (transfer function)

Example: Constant Propagation

• Abstract values:

• Transfer function example: for "plus"

transferPlus(AbstractValue lhs, AbstractValue rhs) {

 return match (lhs, rhs) with

 | (Const(a), Const(b)) -> Const(a+b)

 | _ -> NotAConst

}

NotAConst

NotInitialized

Const(0) Const(1) Const(2) Const(-2)

Why is this Interesting?

• Literature lacks dataflow analyses for real-
world programming languages

– Text-book often cover languages with only
assignment, integers and addition

• Existing frameworks often work on byte-code
level

– or some other low-level intermediate format

Dataflow Analysis for Pluggable Type-
Systems

• Type-systems work on the source-code level:
Dataflow analysis should, too

– The type-checker needs dataflow facts about
source-level entities

What are Pluggable Type-Systems
doing?

• Checker Framework and JavaCOP

– "works in many cases"

– Reuse reaching definitions analysis from javac

– Fixed number of iterations and ignores some
"irrelevant" code

• The Checker Framework fixes some of these problems

– Analysis is performed over AST makes it difficult to
handle exceptions and breaks

• In summary: the existing flow-sensitive
checkers are unsound

What are Pluggable Type-Systems
doing?

• Other problems (Checker Framework)

– Ignores aliasing (unsound)

– Not easily extensible (non-null flow analysis is very
complicated)

– Assumes sequential semantics

 if (o.f != null) {

 o.f.toUpperCase();

}

Goals and Requirements

• Analysis operates close to source program
– We are implementing source-level type checkers

• Reuse logic implemented in checkers

• Build a control flow graph (CFG) to simplify
handling of non-sequential control flow

• Sound and reasonably complete treatment of
aliasing

• Extensible

@Regex String s = "a" + "b";

Overview of Our Framework

1. Translate AST to CFG

– Standard multipass visitor over AST

2. Perform dataflow analysis over CFG with user-
provided

– abstract value what are we tracking?

– transfer function what do operations do?

– store what are intermediate results?

3. Allow queries about result, e.g.,

– Given an AST-node, what is its abstract value

Control Flow Graph

• CFG is a graph of basic blocks

– Conditional basic blocks to model conditional
control flow

– Exceptional edges

• Use type Node for all Java operations and
expressions, e.g.,

– StringLiteralNode, FieldAccessNode, etc.

– Make up the content of basic blocks

public void test(boolean b, String s)

{

 String t = "abc";

 if (b) {

 s = t + "abc";

 }

}

Properties of the CFG

• Explicit representation of implicit Java constructs
– Unboxing, implicit type conversions, etc.

– Analyses do not need to worry about these things

– All control flow explicitly modeled (e.g. exceptions on
field access)

• High-level constructs
– Close to source language

• Different from other approaches
– Not three-address-form

– Analysis is not performed over the AST

CFG Representation Tradeoffs

• Possibility: represent complicated Java constructs
with simpler Nodes ("desugaring")

– Internal representation gets simpler and smaller

– Writing a transfer function becomes easier

• In the Checker Framework, we want to reuse
checker-specific logic, which works on Java AST

– Don't desugar any constructs that can have a type
(don’t desugar statements except expression stmts)

– Desugar loops, conditionals, return, break, etc.

Transfer Functions and Stores

A user of the dataflow framework provides:

• Abstract domain

• The store
– E.g., mapping from local variables to abstract

values

• A set of transfer functions
– One for every node type

– Computes abstract value of a node and the effect
on the store

Using our Analysis Framework in the
Checker Framework

• Abstract values are annotations

– e.g. @NonNull or @Regex

• The transfer function reuses the checker-
specific logic used for type-checking

• The store tracks the annotations on local
variables and fields

– Handles aliasing soundly

How will Checkers use the Framework?

• By default, the dataflow analysis just uses the
logic of the checker to implement a transfer
function

• If necessary, checkers can implement their
own transfer function for more flexibility

Introductory Examples Revisited (1)

• Handled by default analysis

– Type-checker tells flow that "abc" is @NonNull

– The store tracks the knowledge that s is @NonNull

– Dereference of s is safe

@Nullable String s = ...;

s = "abc";

s.toUpperCase();

Introductory Examples Revisited (2)

@Nullable String s = …;

if (s != null) {

 s.toUpperCase();

}

TransferResult visitNotEqualTo(NotEqualToNode n, TransferInput in) {

 Store store = in.getRegularStore();

 Node lhs = n.getLeftOperand();

 Node rhs = n.getRightOperand();

 if (isLocalVariable(lhs) && isNull(rhs)) { // also vice-versa

 Store thenStore = store;

 Store elseStore = store.copy();

 thenStore.addInformation(lhs, @NonNull);

 return new ConditionalTransferResult(thenStore, elseStore);

 }

 return new RegularTransferResult(store);

}

Client Code

Checker Code

Introductory Examples Revisited (3)

TransferResult visitMethodCall(MethodCallNode n, TransferInput in)

{

 Store store = in.getRegularStore();

 if (hasAnnotation(n, @AssertRegexIfTrue)) {

 Variable var = getRegexAfterVariable(n);

 Store thenStore = store;

 Store elseStore = store.copy();

 thenStore.addInformation(var, @Regex);

 return new ConditionalTransferResult(thenStore, elseStore);

 }

 return new RegularTransferResult(store);

}

if (!RegexUtil.isRegex(s)) {

 throw new Error();

}

Pattern.compile(s);

@AssertRegexIfTrue(s)

boolean RegexUtil.isRegex(String s) { … }

Client Code

Checker Code

Library Code

Contributions

• A dataflow framework for the full Java 7
programming language

• A default implementation for the Checker
Framework

– Sound and expressive flow-sensitive checkers

– Easy implementation of checker-specific flow-
sensitive extensions

– Two modes: concurrent or sequential semantics

Future Work

• How important is flow-sensitivity for fields?

• Will the "concurrency-aware" mode cause many
problems in practice?

• Precise flow-sensitivity of RegexChecker

• Easier implementation for NullnessChecker

• Whole-program inference in the context of
Verification Games

if (o.f != null) {

 o.f.toUpperCase();

}

if (o.f != null) {

 unrelated.call();

 o.f.toUpperCase();

}

