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Preface

Memory-Based Learning (MBL) is an elegantly simple and robust machine-learning method ap-
plicable to a wide range of tasks in Natural Language Processing (NLP). Starting from our re-
search group at Tilburg University, we have been working since the end of the 1980s on the de-
velopment of Memory-Based Learning techniques and algorithms. The foundations are bundled
in Daelemans and Van den Bosch (2005). Section 5.7 provides a historical overview of work on
the application of MBL in NLP. With the establishment of the ILK (Induction of Linguistic Knowl-
edge) research group in 1997, and with the increasing use of MBL at the CNTS (now CLiPS)
research group of the University of Antwerp, the need for a well-coded and uniform tool for our
main algorithms became more urgent. TiMBL was the result of combining ideas from a number
of different MBL implementations, cleaning up the interface, and using a whole bag of tricks to
make it more efficient. We think it has become a useful tool for NLP research, and, for that matter,
for many other domains where classification tasks are learned from examples, so we started to
release the software in 1999. With the release of the sixth version of TiMBL we moved to releasing
our software under the GPL license, for anyone to use, adapt and improve under the conditions
stated in the license.

Memory-Based Learning is a direct descendant of the classical k-Nearest Neighbor (k-NN) ap-
proach to classification, which has become known as a powerful pattern classification algorithm
for numeric data. In typical NLP learning tasks, however, the focus is on discrete data, very
large numbers of examples, and many attributes of differing relevance. Moreover, classification
speed is a critical issue in any realistic application of Memory-Based Learning. These constraints
demand non-trivial data structures and speedup optimizations for the core k-NN classifier. Our
approach has resulted in an architecture which compresses the typical flat file organization found
in straightforward k-NN implementations, into a decision-tree structure. While the decision tree
can be used to retrieve the exact k-nearest neighbors (as happens in the IB1 algorithm within
TiMBL), it can also be deterministically traversed as in a decision-tree classifier (the method
adopted by the IGTREE algorithm). We believe that our optimizations make TiMBL one of the
fastest discrete k-NN implementations around.

The main effort in the development and maintenance of this software was and continues to be
invested by Ko van der Sloot. The code started as a rewrite of nibl, a piece of software developed
by Peter Berck from a Common Lisp implementation by Walter Daelemans of IB1-IG. Some of the
index optimizations in TiMBL are due to Jakub Zavrel. The code has benefited substantially from
trial, error and scrutiny by all past and present members of the ILK and CLiPS (formerly CNTS)
groups in Tilburg and Antwerp. We are furthermore indebted to Ton Weijters of Eindhoven
Technical University for his inspirational early work on k-NN and for his ideas on IGTREE.

Our sincere thanks go to the many users of TiMBL who have contributed to it immensely by
giving us feedback and reporting bugs, and to the two organisations that have supported and
enabled its development: NWO, the Netherlands Organization for Scientific Research, and the
School of Humanities of Tilburg University. NWO funding has spanned three subsequent peri-
ods totalling fourteen years. From 1997 until 2001 development was part of the “Induction of
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Linguistic Knowledge” research project funded by NWO’s Pionier programme. Between 2001
and 2006 it was funded as part of the “Memory Models of Language” research project under
the NWO Vernieuwingsimpuls programme, and between 2006 and 2011 as part of the “Implicit
Linguistics” research project under the NWO Vici programme.

The current release (version 6.4) coincides with a release of a Debian Science package for TiMBL.
Its most significant change is a multiprocessor option that “clones” TiMBL internally so that it can
classify a test set on n available processors. An elaborate description of the changes from version
1.0 up to 6.4 can be found in Chapter 3. Although all new features have been tested for some time
in our research groups, the software may still contain bugs and inconsistencies in some places.
We would appreciate it if you would send bug reports, ideas about enhancements of the software
and the manual, and any other comments you might have, to Timbl@uvt.nl.

This reference guide is structured as follows. In Chapter 1 you can find the terms of the open
source license according to which you are allowed to use TiMBL. The subsequent chapter gives
some instructions on how to install the TiMBL package on your computer. Chapter 3 lists the
changes that have taken place up to the current version. Next, Chapter 4 offers a quick-start tuto-
rial for readers who want to get to work with TiMBL right away. The tutorial describes, step-by-
step, a case study with a sample data set (included with the software) representing the linguistic
domain of predicting the diminutive inflection of Dutch nouns. Readers who are interested in
the theoretical and technical details of Memory-Based Learning and of this implementation can
refer to Chapter 5. Chapter 6 provides full reference to the command line options of TiMBL and
supported file formats.



Chapter 1

GNU General Public License

TiMBL is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 3 of the
License, or (at your option) any later version.

TiMBL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with TiMBL. If not,
see <http://www.gnu.org/licenses/>.

In publication of research that makes use of TiMBL 6.4, a citation should be given of: “Walter
Daelemans, Jakub Zavrel, Ko van der Sloot, and Antal van den Bosch (2012). TiMBL: Tilburg Memory
Based Learner, version 6.4, Reference Guide. ILK Technical Report XX-XX Available from
http://ilk.uvt.nl/downloads/pub/papers/ilkXXXX.pdf”

For information about commercial licenses for TiMBL 6.4, contact Timbl@uvt.nl, or send your
request in writing to:

Prof. dr. Walter Daelemans
CLiPS - Language Technology Group
Dept. of Linguistics
University of Antwerp
Prinsstraat 13, L-203, B-2000 Antwerp
Belgium

1
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Chapter 2

Installation

You can get the TiMBL package as a gzipped tar archive from:

http://ilk.uvt.nl/timbl

Following the links from that page, you can download the file timbl-latest.tar.gz. This
file contains the complete source code (C++) for the TiMBL program, a few sample data sets, the
license, and documentation. The installation should be relatively straightforward on most UNIX
systems.

To install the package on your computer, unzip the downloaded file (> is the command line
prompt):

> tar xfz timbl-latest.tar.gz

This will make a directory timbl-6.4 under your current directory. (The numbering may be
higher; the current guide refers to version 6.4).

Alternatively you can do:

> gunzip timbl-6.4.tar.gz

and unpack the tar archive:

> tar xf timbl-6.4.tar

Go to the timbl-6.4 directory, and configure the package by typing

> cd timbl-6.4

> ./configure --prefix=<location to install>

If you do not use the --prefix option, TiMBL will try to install itself in the directory /usr/local/.
If you do not have root access you can specify a different installation location such as $HOME/install.

It is not obligatory to install TiMBL, but if you plan to install TiMBL-based extensions such as
TimblServer1, Mbt2, or Frog3, or you want to build your own extensions using the TiMBL API,
installing is the best choice.

After configure you can build TiMBL:

> make

1http://ilk.uvt.nl/timbl
2http://ilk.uvt.nl/mbt
3http://ilk.uvt.nl/frog

3



4 CHAPTER 2. INSTALLATION

and (as recommended) install:

> make install

If the process was completed successfully, you should now have an executable file named timbl

(low caps) in the directory <location to install>/bin, and a static library libTimbl.a

in the directory <location to install>/lib. Additionally, several demo programs named
api test*, classify and tse are created in the ./demos subdirectory.

Within the <location to install> directory a subdirectory is also created: share/doc/timbl
where the TiMBL 6.4 documentation can be found, and which in turn contains a subdirectory
examples with example data files. Some of these data sets are used in the Quick Start Section 4
of this document; other data and source files are referred to in the API documentation. The latter,
along with a pdf version of this document, can also be found in the doc directory. Note that the
API documentation is a beta-state document.

TiMBL should now be ready for use. If you want to run the examples and demos from this
manual, you should act as follows:

• Be sure to add <location to install>/bin to your PATH. In many shells something
like

> export PATH=$PATH:<location to install>/bin will do.

• copy all the files from <location to install>/share/doc/timbl/examples to some
working location. (By default, TiMBL writes its results to the directory where it finds the
data.)

• and test:

cd to the working location, and then

timbl -f dimin.train -t dimin.test

If you did not install TiMBL, the executable can be found in the src directory of the build. The
demo files can be found in the demo directory.

The email address for problems with the installation, bug reports, comments and questions is
Timbl@uvt.nl.



Chapter 3

Changes

This chapter gives a brief overview of the changes from all previously released versions (1.0 up
to 6.4) for users already familiar with the program.

3.1 From version 6.3 to 6.4

• With --clones=<n>, TiMBL can be told to classify a test set using n processors in parallel.
This option will speed up classification near-linearly with respect to n, although with larger
n the overhead causes the speedup to be increasingly sub-linear.

• We added Jensen-Shannon divergence as a pairwise similarity metric for feature values.
With MVDM and Jeffrey divergence, TiMBL now offers three class disribution distance func-
tions for value differences.

• Euclidean distance was long overdue as an optional distance function (-mE) for numeric
features.

• -w 5 or -w SD sets the feature weighting of numeric features to the standard deviation of
its values.

• With --occurrences={train|test|both}, instances in instance base files can be ac-
companied by a (long) integer specifying a number of token occurrences of that instance,
so that it does not count as a single instance in the TiMBL tree, but as <n> instances. These
counts can be exclusively present in the training set, in the test set, or in both if a training
and test action is invoked at once.

• The verbosity option +v b adds overall statistics of IGTree nodes (leafs and non-ending
nodes) and branching at each tree level.

• The executable file is now called timbl instead of Timbl to be more GNU/Linux compli-
ant. Previous users of TiMBL may want to check scripts for this name change.

3.2 From version 6.2 to 6.3

• All server-related functionality is removed from TiMBL. A new TimblServer package is
available wich provides the same interface as Timbl up to version 6.3, but also adds some

5



6 CHAPTER 3. CHANGES

extra features, such as running multiple but separate experiments on one TCP port. See the
TimblServer package for more details.

• Starting with Timbl 6.3 we support installable packages for Debian and Ubuntu (.deb),
RedHat (.rpm) and MacOSX (Fink)1.

• Some bugs and inconsistencies have been fixed.

3.3 From version 6.1 to 6.2

Version 6.2 differs from 6.1 in a great number of internal changes aimed at making the code better
maintainable and extendible, in some minor bug fixes, and in the following more prominent
changes:

• A new distance metric, the Dice coefficient, has been added; the metric can be set with -mDC.
Analogous to the Levenshtein (-mL) metric, the Dice coefficient operates at the feature value
level; it computes the overlap in character bigrams of two value strings.

• Value difference matrices, as used by the MVDM and Jeffrey divergence distance metrics,
can now be written to file, and read into TiMBL, allowing for user-defined value difference
metrics to be used. The new command line options are --matrixout=<filename> and
--matrixin=<filename>.

• The IGTREE algorithm has been optimized beyond the improvements introduced in version
6.0. With very large training sets, IGTREE was reported to be exponentially slower in the
later stages of training. Trees are now built in near-linear time.

Finally, besides minor bug fixes, a great number of internal changes were made to make the code
better maintainable and extendible.

3.4 From version 6.0 to 6.1

Version 6.1 differs from 6.0 mainly in the changed configuration. It is now based on autotools
and is delivered as an installable package. Some bugs have been fixed as well.

3.5 From version 5.1 to 6.0

Version 6.0 differs from 5.1 firstly in terms of internal changes aimed at increasing classification
speed and lowering memory usage, of which the most prominent are

• The IGTREE algorithm has been optimized. Learning has been made more memory-lean,
while classification has been optimized so that it is now orders of magnitude faster than
before on most data sets.

1http://ilk.uvt.nl/timbl-packages
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• MVDM matrices are partly prestored; only the MVDM values of pairs of frequent values
are precomputed. The threshold frequency n can now be determined with -c n. This
way memory can be traded for speed, up to a point. The default value 10 remains the
recommended one.

Also, two metrics and several verbosity options and other command-line switches are added:

• Two distance metrics are added: -mC sets the Cosine metric, and -mL sets the Levenshtein
metric. The latter metric operates at the feature-value level, and thus offers an alternative
to the all-or-nothing Overlap metric for string-valued features.

• Class distribution output generated with +v db can be normalized so that they add to 1.0,
with the additional -G option (or -G0). As a simple smoothing option, with -G1:double

all class votes are incremented by double before normalization. For example, -G1:1 (or
-G1 for short) is “add one”-smoothing; -G1:0.5 adds 0.5 to all class votes.

• With -Beam=n (from version 6.2 onwards: --Beam=n), where n is an integer, the +v db

output is constrained to the n classes receiving the highest votes. This special limit is useful
in cases in which the +v db output, typically used for further processing, generates far too
much output in its default unconstrained setting.

• Class distributions are not stored on non-terminal nodes with IGTREE and TRIBL by default.
To revert this default, e.g. to be able to use +v db with IGTREE, the setting +D can be used.

• With -T n, the user can specify that the nth column in the training set of labeled examples
contains the label to be predicted, while all other columns represent the input features. By
default, the final column is assumed to contain the class labels.

• After classification, TiMBL reports its classification speed at microsecond precision instead
of in seconds.

• The verbosity option +v md displays the level at which a classification was made by IGTREE

(-a1), and whether the class label was obtained from a leaf node or an end node.

• With -X [file], TiMBL dumps its internal TiMBL tree into a file containing an XML tree.
This option is analogous to -I [file], which prints a TiMBL tree in TiMBL’s proprietary
format, the difference being that the latter format can be read into TiMBL again.

• Several minor bugs have been resolved.

3.6 From version 5.0 to 5.1

Version 5.1 adds speed and memory improvements that are notable with datasets that have very
large amounts of examples, features, feature values, or classes (and, especially, combinations of
those). Previous versions exhibited exponential slowdown in some worst cases; this has been
largely countered. On the outside, TiMBL has been updated in the following aspects:

• TiMBL offers extended performance reporting: next to accuracy it reports on micro and
macro-averages of F-score and AUC (area under the ROC-curve) with +v as. Optionally,
it also shows each individual class’ precision, recall (or true positive rate), and false positive
rate with +v cs.

• TiMBL always uses gain ratio feature weighting as the default case, if not specified by the
user, also with the MVDM and Jeffrey Divergence similarity metrics.
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• Two additional feature orderings for the internal TiMBL trees are added, -TGxE and -TIxE

(gain ratio × entropy and information gain × entropy, respectively) to potentially tackle the
problem of unbalanced trees.

• Bugs in leave-one-out testing with numeric features and with exemplar weighting were
fixed.

3.7 From version 4.3 to 5.0

Version 5.0 is the conclusion of a number of recodings (mostly involving more generic treatment
of variables to improve robustness, but also the removal of inverted indexing on the internal tree
representation) that have changed the internals of TiMBL considerably. On the outside, TiMBL
displays the following new characteristics:

• Next to the Overlap, MVDM, and Numeric distance functions, TiMBL now features the Jef-
frey divergence distance function and the Dot-product distance function.

• The exponential-decay distance weighting function can be set using a second parameter,
which can change the shape of the function from normal exponential to bell-shaped.

• In addition to the “binary” format, TiMBL can now read a more generic sparse data format.
This format allows instances to be coded by tuples of < feature number, feature value >
where the value can be symbolic or numeric rather than only binary.

• Tree files generated by TiMBL versions 1.*, 2.* and 3.* are no longer supported.

• The command line interface has had the following additions, including the ones reflecting
the above changes:

– -mJ activates the Jeffrey divergence distance metric.

– -mD activates the Dot-product distance metric.

– -dED:<a>:<b> (without whitespace) sets the α and new β parameters. If unspecified,
as in -d ED:<a> or the older (deprecated) -d ED <a>, β is set to 1.0.

– -F Sparse declares that training and test files are in the sparse < feature number,
feature value > tuple-format described in more detail in section 6.1.

– +v k is a new verbosity option that prints all class distributions per k-nearest distance
per classified instance in the output file. It works analogous to the +v n option, but
does not print the neighbors themselves.

3.8 From version 3.0 to 4.3

As the last upgrade of the version 4 strain, version 4.3 added some command line functionality
and internal code changes to version 4.2. Minor progressive changes from 4.0 to 4.3 are found at
the bottom of this list and are marked as such.

• Distance weighting of the k nearest neighbors. This classical exemplar weighting scheme
(Dudani, 1976) allows closer nearest neighbors in the k to have a more prominent vote in
classification. TiMBL incorporates linear, inversed, and exponential distance weighting.
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• Incremental edited memory-based learning with IB2 (Aha, Kibler, and Albert, 1991). This
incremental version of IB1 adds instances to memory only when those instances are mis-
classified by the then-current set of instances in memory.

• Frequency-filtered MVDM distance metric. The option, which is not selected by default,
is an add-on of the MVDM metric, that backs off from the MVDM metric to the Overlap
distance function whenever one or both in a pair of matched values occurs fewer times in
the training material than a user-determined threshold.

• TRIBL2. The TRIBL2 algorithm has been implemented as an additional trade-off between
IGTREE and IB1. In contrast to TRIBL, TRIBL2 uses no threshold parameter.

• Exemplar weighting. TiMBL can read additional numeric exemplar weights (generated
externally) when reading a data file, and use these weights during neighbor distance com-
putation in k-NN classification.

• Cross-validation testing. Analogous to the leave-one-out testing option, with cross-validation
testing it is possible to let TiMBL run systematic tests on different values of parameters,
without completely re-initializing the classifier in every fold of the validation experiment.

• The number of concurrent connections to a TiMBL server has been restricted, but can be set
to different values.

• The command line interface has had several additions reflecting the above changes, plus
one extra verbosity option:

– the -d metriccode option sets the distance weighting metric. Three metrics are
available: inverse distance (code ID), inverse linear (IL), and exponential decay (ED,
which takes an extra argument a, without whitespace, determining the factor of the ex-
ponential function). By default, no distance weighting is used (code Z). See Chapter 5
for descriptions.

– the -L n option sets the frequency threshold in the optional switch (backoff) from
MVDM or Jeffrey divergence to Overlap; whenever in an MVDM or Jeffrey divergence
distance computation one or both of a pair of values occur fewer than n times, Overlap
is used rather than the MVDM metric. The default value for n is 1 (no switching).

– the -a 3 or -a IB2 switch invokes the IB2 algorithm. This algorithm expects to have
the -b switch set.

– the -b n option sets the number (n) of lines counting from the top of the training
set file, which form the bootstrap set of memorized instances to which IB2 will start
adding instances incrementally.

– the -a 4 or -a TRIBL2 switch invokes the TRIBL2 algorithm.

– the -C n switch (default: n set to 10) restricts the number of concurrent connections
to a TiMBL server (cf. the -S switch).

– the +v/-v option has cm as a new optional argument; it returns the confusion matrix,
obtained after testing, between predicted and actual classes in the test data.

• The “programmer’s reference” or API section has been separated from this manual. This
new API, describing the underlying structure of TiMBL, is available as a separate document
in the TiMBL software distribution.

• Two bugs relating to a type of sparse data problem have been resolved. The first involved
leave-one-out experiments on data sets with features that have values that occur only once
in the training data. The second bug occurred with the use of the -F Binary option with
the same type of data.
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• [4.1] Exemplar weights are stored in the TiMBL-tree.

• [4.1] The core representation of TiMBL-trees has been modified, causing no changes at the
surface except that the TRIBL variant uses less memory.

• [4.2] Feature value and class information in the internal TiMBL tree is hashed, by default,
except with binary features. Hashing can be explicitly set on or off through the flag +H or
-H.

• [4.2] The discretization of numeric features, used for computing feature weights, has changed
from linear binning between minimum and maximum values, to equal-content binning.

• [4.2] Tie resolution between equal class distributions in the nearest neighbors set is resolved
by first expanding the k by one value. If the tie persists after the enlargement of the nearest
neighbor set, the original tie resolution method is applied.

• [4.3] Internal changes in the code (with no effect on learning and classification functionality)
have been implemented with respect to namespaces.

• [4.3] A progress marker (one dot per 10 seconds) in computationally intensive operations on
the internal representation of the instance base (e.g. pruning IGTREEs) is added in TiMBL’s
screen output.

• A number of bugs have been fixed, notably to handle erroneous input more robustly.

3.9 From version 2.0 to 3.0

• Server functionality. Apart from the standard processing of test items from a file, alter-
natively you can now specify a portnumber with -S portnumber to open a socket and
send commands for classification of test patterns or change of parameters to it. A sample
client program is included in the distribution. This allows fast response times when small
amounts of test material are presented at various intervals. It also opens the possibility of
having large numbers of “classification agents” cooperate in real time, or of classication of
the same data with different parameters.

• Leave-one-out testing. To get an estimate of the classification error, without setting aside
part of one’s data as a test set, one can now test by “leave-one-out” (-t leave one out),
in effect testing on every case once, while training on the rest of the cases, without com-
pletely re-initializing the classifier for every test case.

• Support for sparse binary features. For tasks with large numbers of sparse binary features,
TiMBL now allows for an input format which lists only the “active” features, avoiding
the listing of the many (zero-valued) features for each case. This format is described in
Section 6.2.1.

• Additional feature weighting metrics. We have added chi-squared and shared variance
measures as weighting schemes. These weighting metrics are sometimes more robust to
large numbers of feature values and other forms of data sparseness.

• Different metrics (Overlap, MVDM or Numeric) can be applied to different features.

• The command line interface has slightly been cleaned up, and re-organized:

– The -m metricnumber switch to choose metrics has been replaced by the use of a
specification string following -m. E.g. you can specify to use MVDM as the default
metric, but use Overlap on features 5-7,9, Numeric on feature 1, and ignore feature 10
(-m M:O5-7,9:N1:I10).
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– All of the output needed for analysing the matching of nearest neighbors has been
moved to the verbosity setting.

– Verbosity levels and some other options can be switched on +v and off -v, even be-
tween different classification actions.

– Because of the large amount of verbosity levels, the +v option takes mnemonic abbre-
viations as arguments instead of numeric verbosity levels. Although the old (numeric)
format is still supported, it’s use is not encouraged as it will disappear in future ver-
sions.

• Because of significant optimizations in the nearest neighbor search, the default is no longer
to use inverted indexes. These can however still be turned on by using the +- switch on the
command line.

• You can now choose the output filename or have it generated by TiMBL on the basis of the
test filename and the parameters.

• You can use TiMBL in a pipeline of commands by specifying ’-’ as either input, output or
both.

• Several problems with the display of nearest neighbors in the output have been fixed.

• The API has been adapted a bit to allow more practical use of it.

3.10 From version 1.0 to 2.0

• We have added a new algorithm: TRIBL, a hybrid between the fast IGTREE algorithm and
real nearest neighbor search (for more details, see 5.4, or Daelemans, Weijters, and Van den
Bosch (1997b)). This algorithm is invoked with the -a 2 switch and requires the specifica-
tion of a so-called TRIBL-offset, the feature where IGTREE stops and case bases are stored
under the leaves of the constructed tree.

• Support for numeric features. Although the package has retained its focus on discrete fea-
tures, it can now also process numeric features, scale them, and compute feature weights
on them. You specify which features are numeric with the -N option on the command line.

• The organization of the code is much more object-oriented than in version 1.0.

• A Memory-Based Learning API is made available. You can define Memory-Based classifi-
cation objects in your own C++ programs and access all of the functionality of TiMBL by
linking to the TiMBL library.

• It has become easier to examine the way decisions are made from nearest neighbors, be-
cause several verbosity-levels allow you to dump similarity values (-D), distributions (-v
16), and nearest neighbor sets (-v 32) to the output file. The -d option for writing the
distributions no longer exists.

• Better support for the manipulation of MVDM matrices. Using the -U and -u options
it is now possible to respectively save and read back value difference matrices (see Sec-
tion 6.2.3).

• Both “pre-stored” and “regular” MVDM experiments now generate filenames with “mvd”
in the suffix. This used to be “pvd” and “mvd” respectively.

• a number of minor bugs have been fixed.
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Chapter 4

Quick-start Tutorial

This quick-start tutorial is meant to get you started with TiMBL right away. We discuss how to
format the data of a task to serve as training examples, which choices can be made during the con-
struction of the classifier, how various choices can be evaluated in terms of their generalization
accuracy, and various other practical issues. The reader who is interested in more background
information on TiMBL implementation issues and a formal description of Memory-Based Learn-
ing, is advised to read Chapter 5.

Memory-Based Learning (MBL) is based on the idea that intelligent behavior can be obtained by
analogical reasoning, rather than by the application of abstract mental rules as in rule induction
and rule-based processing. In particular, MBL is founded in the hypothesis that the extrapolation
of behavior from stored representations of earlier experience to new situations, based on the
similarity of the old and the new situation, is of key importance.

MBL algorithms take a set of examples (fixed-length patterns of feature-values and their associ-
ated class) as input, and produce a classifier which can classify new, previously unseen, input
patterns. Although TiMBL was designed with linguistic classification tasks in mind, it can in
principle be applied to any kind of classification task with symbolic or numeric features and dis-
crete (non-continuous) classes for which training data is available. As an example task for this
tutorial we go through the application of TiMBL to the prediction of Dutch diminutive suffixes.
The necessary data sets are included in the TiMBL distribution, so you can replicate the examples
given below on your own system.

4.1 Data

The operation of TiMBL will be illustrated below by means of a real natural language processing
task: prediction of the diminutive suffix form in Dutch (Daelemans, Berck, and Gillis, 1997). In
Dutch, a noun can receive a diminutive suffix to indicate small size literally or metaphorically
attributed to the referent of the noun; e.g. mannetje means little man. Diminutives are formed by
a productive morphological rule which attaches a form of the Germanic suffix -tje to the singular
base form of a noun. The suffix shows variation in its form (Table 4.1). The task we consider here
is to predict which suffix form is chosen for previously unseen nouns on the basis of their form.

For these experiments, we collect a representation of nouns in terms of their syllable structure
as training material1. For each of the last three syllables of the noun, four different features are

1These words were collected form the CELEX lexical database (Baayen, Piepenbrock, and van Rijn, 1993).

13
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Noun Form Suffix

huis (house) huisje -je
man (man) mannetje -etje
raam (window) raampje -pje
woning (house) woninkje -kje
baan (job) baantje -tje

Table 4.1: Allomorphic variation in Dutch diminutives.

collected: whether the syllable is stressed or not (values - or +), the string of consonants before
the vocalic part of the syllable (i.e. its onset), its vocalic part (nucleus), and its post-vocalic part
(coda). Whenever a feature value is not present (e.g. a syllable does not have an onset, or the
noun has less than three syllables), the value ‘=’ is used. The class to be predicted is either E
(-etje), T (-tje), J (-je), K (-kje), or P (-pje).

Some examples are given below (the word in the rightmost column is only provided for conve-
nience and is not used). The values of the syllabic content features are given in phonetic notation.

+ b i = - z @ = - m A nt J biezenmand
= = = = = = = = + b I x E big
= = = = + b K = - b a n T bijbaan
= = = = + b K = - b @ l T bijbel

Our goal is to use TiMBL in order to train a classifier that can predict the class of new, previously
unseen words as correctly as possible, given a set of training examples that are described by the
features given above. Because the basis of classification in TiMBL is the storage of all training ex-
amples in memory, a test of the classifier’s accuracy must be done on a separate test set. We will
call these datasets dimin.train and dimin.test, respectively. The training set dimin.train
contains 2999 words and the test set contains 950 words, none of which are present in the train-
ing set. Although a single train/test partition suffices here for the purposes of explanation, it
does not factor out the bias of choosing this particular split. Unless the test set is sufficiently
large, a more reliable generalization accuracy measurement is used in real experiments, e.g. 10-
fold cross-validation (Weiss and Kulikowski, 1991). This means that 10 separate experiments are
performed, and in each “fold” 90% of the data is used for training and 10% for testing, in such a
way that each instance is used as a test item exactly once. Another reliable way of testing the real
error of a classifier is leave-one-out (Weiss and Kulikowski, 1991). In this approach, every data
item in turn is selected once as a test item, and the classifier is trained on all remaining items.
Accuracy of the classifier is then the number of data items correctly predicted. With the option
-t leave one out, this testing methodology is used by TiMBL. We will use this option in the
tutorial on the file dimin.data, the union of dimin.train and dimin.test.

4.2 Using TiMBL

Different formats are allowed for training and test data files. TiMBL is able to guess the type
of format in most cases. We will use comma-separated values here, with the class as the final
value. This format is called C4.5 format in TiMBL because it is the same as that used in Quinlan’s
well-known C4.5 program for learning decision trees (Quinlan, 1993). See Section 6.2 for more
information about this and other file formats.

An experiment is started by executing TiMBL with the two files (dimin.train and dimin.test)
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as arguments (“>” is the command line prompt):

> timbl -f dimin.train -t dimin.test

Upon completion, a new file has been created with name dimin.test.IB1.O.gr.k1.out, which
is identical to the input test file except that an extra comma-separated column is added with the
class predicted by TiMBL. The name of the file provides information about the MBL algorithms
and metrics used in the experiment (the default values in this case). We will describe these shortly.

Apart from the result file, information about the operation of the algorithm is also sent to the
standard output. It is therefore advisable to redirect the output to a file in order to make a log of
the results.

> timbl -f dimin.train -t dimin.test > dimin-exp1

The defaults used in this case work reasonably well for most problems. We will now provide a
point by point explanation of what goes on in the output.

TiMBL 6.4.2 (c) ILK 1998 - 2011.

Tilburg Memory Based Learner

Induction of Linguistic Knowledge Research Group, Tilburg University

CLiPS Computational Linguistics Group, University of Antwerp

Mon Apr 23 15:43:26 2012

Examine datafile ’dimin.train’ gave the following results:

Number of Features: 12

InputFormat : C4.5

TiMBL has detected 12 features and the C4.5 input format (comma-separated features, class at
the end).

Phase 1: Reading Datafile: dimin.train

Start: 0 @ Mon Oct 19 21:30:00 2009

Finished: 2999 @ Mon Oct 19 21:30:00 2009

Calculating Entropy Mon Oct 19 21:30:00 2009

Lines of data : 2999

DB Entropy : 1.6178929

Number of Classes : 5

Feats Vals InfoGain GainRatio

1 3 0.030971064 0.024891536

2 50 0.060860038 0.027552191

3 19 0.039562857 0.018676787

4 37 0.052541227 0.052620750

5 3 0.074523225 0.047699231

6 61 0.10604433 0.024471911

7 20 0.12348668 0.034953203

8 69 0.097198760 0.043983864

9 2 0.045752381 0.046816705

10 64 0.21388759 0.042844587

11 18 0.66970458 0.18507018

12 43 1.2780762 0.32537181

Feature Permutation based on GainRatio/Values :

< 9, 5, 11, 1, 12, 7, 4, 3, 10, 8, 2, 6 >

Phase 1 is the training data analysis phase. Time stamps for start and end of analysis are pro-
vided. Some preliminary analysis of the training data is done: number of training items, number
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of classes, entropy of the training data. For each feature, the number of values, and four vari-
ants of an information-theoretic measure of feature relevance are given. These are used both for
memory organization during training and for feature relevance weighting during testing (see
Chapter 5). Finally, an ordering (permutation) of the features is given. This ordering is used for
building the tree-index to the case-base.

Phase 2: Learning from Datafile: dimin.train

Start: 0 @ Mon Oct 19 21:30:00 2009

Finished: 2999 @ Mon Oct 19 21:30:00 2009

Size of InstanceBase = 19231 Nodes, (769240 bytes), 49.77 % compression

Examine datafile ’dimin.test’ gave the following results:

Number of Features: 12

InputFormat : C4.5

Phase 2 is the learning phase: all training items are stored in an efficient way in memory for use
during testing. Again timing information (real time) is provided, as well as information about
the size of the data structure representing the stored examples and the amount of compression
achieved.

Starting to test, Testfile: dimin.test

Writing output in: dimin.test.IB1.O.gr.k1.out

Algorithm : IB1

Global metric : Overlap

Deviant Feature Metrics:(none)

Weighting : GainRatio

Feature 1 : 0.024891535617620

Feature 2 : 0.027552191321752

Feature 3 : 0.018676787182524

Feature 4 : 0.052620750282779

Feature 5 : 0.047699230752236

Feature 6 : 0.024471910753751

Feature 7 : 0.034953203413051

Feature 8 : 0.043983864437713

Feature 9 : 0.046816704745507

Feature 10 : 0.042844587034556

Feature 11 : 0.185070180760327

Feature 12 : 0.325371814230901

Tested: 1 @ Fri Dec 24 20:27:07 2010

Tested: 2 @ Fri Dec 24 20:27:07 2010

Tested: 3 @ Fri Dec 24 20:27:07 2010

Tested: 4 @ Fri Dec 24 20:27:07 2010

Tested: 5 @ Fri Dec 24 20:27:07 2010

Tested: 6 @ Fri Dec 24 20:27:07 2010

Tested: 7 @ Fri Dec 24 20:27:07 2010

Tested: 8 @ Fri Dec 24 20:27:07 2010

Tested: 9 @ Fri Dec 24 20:27:07 2010

Tested: 10 @ Fri Dec 24 20:27:07 2010

Tested: 100 @ Fri Dec 24 20:27:07 2010

Ready: 950 @ Fri Dec 24 20:27:07 2010

Seconds taken: 0.0678 (14003.54 p/s)

overall accuracy: 0.967368 (919/950), of which 39 exact matches

There were 5 ties of which 4 (80.00%) were correctly resolved

In Phase 3, the trained classifier is applied to the test set. Because we have not specified which
algorithm to use, the default settings are used (IB1 with information-theoretic feature weighting).
This algorithm computes the similarity between a test item and each training item in terms of
weighted overlap: the total difference between two patterns is the sum of the relevance weights of
those features which are not equal. The class for the test item is decided on the basis of the least
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distant item(s) in memory. To compute relevance, Gain Ratio is used (an information-theoretic
measure, see Section 5.1.2). Time stamps indicate the progress of the testing phase. Finally,
accuracy on the test set is logged, and the number of exact matches2 and ties (two or more classes
are equally frequent in the nearest neighbor set). In this experiment, the diminutive suffix form
of 96.7% of the new words was correctly predicted. Train and test set overlap in 39 items, and the
algorithm had to break five ties, four of which were broken correctly.

The meaning of the output file names can be explained now:
dimin.test.IB1.O.gr.k1.out means output file (.out) for dimin.test with algorithm
MBL (=IB1), similarity computed as weighted overlap (.O), relevance weights computed with gain
ratio (.gr), and number of most similar memory patterns on which the output class was based
equal to 1 (.k1).

4.3 Algorithms and metrics

A precise discussion of the different algorithms and metrics implemented in TiMBL is given in
Chapter 5. We will discuss the effect of the most important ones on our data set.

A first choice in algorithms is between using IB1 and IGTREE. In the trade-off between general-
ization accuracy and efficiency, IB1 usually, but not always, leads to more accuracy at the cost of
more memory and slower computation, whereas IGTREE is a fast heuristic approximation of IB1,
but sometimes less accurate. The IGTREE algorithm is used when -a 1 is given on the command
line, whereas the IB1 algorithm used above (the default) would have been specified explicitly by
-a 0.

> timbl -a1 -f dimin.train -t dimin.test

We see that IGTREE performs only slightly worse (96.6%) than IB1 (96.8%) for this train-test par-
titioning of the data — it uses less memory and is faster, however.

When using the IB1 algorithm, there is a choice of metrics for influencing the definition of similar-
ity. With weighted overlap, each feature is assigned a weight, determining its relevance in solving
the task. With the modified value difference metric (MVDM), each pair of values of a particular fea-
ture is assigned a value difference. The intuition here is that in our diminutive problem, for
example, the codas n and m should be regarded as being more similar than n and p. These pair-
wise differences are computed for each pair of values in each feature (see Section 5.1.4). Selection
between weighted overlap and MVDM is done by means of the -mM parameter. The following
selects MVDM, whereas -mO (weighted overlap) is the default.

> timbl -mM -f dimin.train -t dimin.test

Especially when using MVDM, but also in other cases, it may be useful to extrapolate not just
from the most similar example in memory, which is the default, but from several. This can be
achieved by using the −k parameter followed by the wanted number of nearest neighbors. E.g.,
the following applies IB1 with the MVDM metric, with extrapolation from the 5 nearest neighbors.

> timbl -mM -k5 -f dimin.train -t dimin.test

2An exact match in this experiment can occur when two different nouns have the same feature-value representation.
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no weight gain information chi
(overlap) ratio gain squared

Overlap, −k1 86.4 96.7 96.6 96.6
Overlap, −k3 73.1 96.4 96.8 96.9
Overlap, −k5 62.6 95.4 96.1 96.1

MVDM, −k1 95.8 96.3 96.1 96.2
MVDM, −k3 97.4 97.6 97.6 97.6
MVDM, −k5 97.8 97.7 97.7 97.7

Table 4.2: Some results for diminutive prediction.

Whenever more than one nearest neighbor is taken into account for extrapolation, it may be
useful to weigh the influence of the neighbors on the final decision as a function of their distance
from the test item. Several possible implementations of this distance function are provided. E.g.,
the following provides inverse distance:

> timbl -mM -k5 -dID -f dimin.train -t dimin.test

Within the IB1 weighted overlap option, the default feature weighting method is gain ratio. Other
feature relevance weighting methods are available as well. By setting the parameter -w to 0,
an unweighted overlap definition of similarity is created where each feature is considered equally
relevant. In that case, similarity reduces to the number of equal values in the same position
in the two patterns being compared. As an alternative weighting, users can provide their own
weights by using the -w parameter with a filename in which the feature weights are stored (see
Section 6.2.2 for a description of the format of the weights file).

Table 4.2 shows a small matrix indicating the effect of distance metric (Overlap versus MVDM)
and weighting method choice on generalization accuracy, using the same training and test set as
before, and increasing k from 1 to 3 and 5. While increasing k leads to a deterioration of gen-
eralization accuracy with the Overlap function, it leads to improvements with MVDM. Another
clear contrast is that the absence of feature weighting leads to the lowest scores with the Overlap
function, and the highest score with MVDM and k = 5. Given that TiMBL offers several more
hyperparameters than only k, the distance metric, and the feature weighting metric, it should be
obvious that even with a single training and test set experiment, a large experimental matrix can
be explored. Unfortunately, the location of the cell with the highest number in this matrix cannot
be predicted upfront. It is therefore useful to try out a large set of reasonable combinations of
options by cross-validation on the training data to achieve best results with MBL (Van den Bosch,
2004b). The option -t @f where f is the name of a file, allows you to predefine various com-
binations of options to be tested and test them without having the training stages repeated each
time. See Chapter 6.1.

4.4 More options

Several input and output options exist to make life easier while experimenting. See Chapter 6.1
for a detailed description of these options. One especially useful option for testing linguistic
hypotheses is the ignore option, which allows you to skip certain features when computing sim-
ilarity. E.g. if we want to test the hypothesis that only the rime (nucleus and coda) and the
stress of the last syllable are actually relevant in determining the form of the diminutive suffix,
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we can execute the following with the previously best parameter settings to disregard all but the
fourth-last and the last two features. As a result we get an accuracy of 97.1%.

> timbl -mM:I1-8,10 -k5 -w0 -f dimin.train -t dimin.test

The +/-v (verbosity) option allows you to control the amount of information that is generated
in the output, ranging from nearly nothing (+v s) to a lot (+v as+cs+di+db+n+k). Specific
verbosity settings exist for dumping option settings (+v o), feature relevance weights (default),
value-class conditional probabilities (+v p), exact matches (+v e), distributions (+v db), a con-
fusion matrix (+v cm), advanced statistics besides accuracy: micro-average and macro-average
F-score and AUC (+v as), per-class advanced statistics (+v cs), the nearest neighbors on which
decision are based (+v n), just the class distributions per k-nearest distance per classified in-
stance (+v k), or the distances to the nearest neighbor (+v di). E.g. the following command
results in an output file with distributions.

> timbl +v db -f dimin.train -t dimin.test

The resulting output file dimin.test.IB1.O.gr.k1.out contains lines like the following.

+,t,L,=,-,m,@,=,-,l,I,N,E,E { E 1.00000 }

=,=,=,=,=,=,=,=,+,pr,O,p,J,J { E 3.00000, J 12.0000 }

=,=,=,=,=,=,=,=,+,w,e,t,J,J { J 2.00000 }

=,=,=,=,+,t,L,n,-,h,L,s,J,J { J 1.00000 }

=,=,=,=,=,=,=,=,+,t,L,n,T,T { T 1.00000 }

=,=,=,=,=,=,=,=,+,z,o,m,P,P { P 3.00000 }

+,d,a,=,-,m,@,s,-,kr,A,ns,J,J { J 1.00000 }

=,=,=,=,+,=,a,rd,-,m,A,n,E,E { E 2.00000 }

=,=,=,=,=,=,=,=,+,f,M,n,T,T { T 43.0000, E 20.0000 }

-,d,u,=,-,k,@,=,-,m,A,nt,J,J { J 1.00000 }

This information can e.g. be used to assign a certainty to a decision of the classifier, or to make
available a second-best back-off option. Another verbosity option, +v di, displays the distance
to the nearest neighbor:

> timbl +v di -f dimin.train -t dimin.test

+,l,a,=,-,d,@,=,-,k,A,st,J,J 0.070701

-,s,i,=,-,f,E,r,-,st,O,k,J,J 0.000000

=,=,=,=,=,=,=,=,+,sp,a,n,T,T 0.042845

=,=,=,=,=,=,=,=,+,st,o,t,J,J 0.042845

=,=,=,=,+,sp,a,r,-,b,u,k,J,J 0.024472

+,h,I,N,-,k,@,l,-,bl,O,k,J,J 0.147489

-,m,e,=,-,d,A,l,+,j,O,n,E,E 0.182421

-,sn,u,=,-,p,@,=,+,r,K,=,T,T 0.046229

=,=,=,=,=,=,=,=,+,sp,A,N,E,E 0.042845

+,k,a,=,-,k,@,=,-,n,E,st,J,J 0.114685

This can be used to study how very similar instances (low distance) and less similar patterns
(higher distance) are used in the process of generalization.

The listing of nearest neighbors is useful for the analysis of the behavior of a classifier. It can be
used to interpret why particular decisions or errors occur.

> timbl +v n+k -mM -k3 -w0 -f dimin.train -t dimin.test
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+,m,I,=,-,d,A,G,-,d,},t,J,J { J 3.00000 }

# k=1, 1 Neighbor(s) at distance: 0.99179269134432

# +,p,a,=,-,t,@,rs,-,f,A,t,{ J 1.00000 }

# k=2, 1 Neighbor(s) at distance: 0.99458957262696

# +,h,o,=,-,n,@,G,-,b,A,k,{ J 1.00000 }

# k=3, 1 Neighbor(s) at distance: 1.0088291749842

# +,h,E,r,-,d,@,rs,-,t,A,s,{ J 1.00000 }

-,t,@,=,-,l,|,=,-,G,@,n,T,T { T 3.00000 }

# k=1, 1 Neighbor(s) at distance: 0.33024081383366

# -,x,@,=,+,h,|,=,-,G,@,n,{ T 1.00000 }

# k=2, 1 Neighbor(s) at distance: 0.49144604610567

# -,d,@,r,-,w,a,=,-,G,@,n,{ T 1.00000 }

# k=3, 1 Neighbor(s) at distance: 0.56944572926932

# -,st,@,=,-,l,I,=,-,N,@,=,{ T 1.00000 }

A confusion matrix, printed when the +v cm option is selected, can bring to light specific errors
of the classifier that would not be apparent from the overall accuracy. Applied to the diminutive
data, the following confusion matrix is computed and printed:

> timbl +v cm -f dimin.train -t dimin.test

Confusion Matrix:

T E J P K

-----------------------------------

T | 453 0 2 0 0

E | 0 87 4 1 8

J | 1 5 346 0 0

P | 0 3 0 24 0

K | 0 7 0 0 9

-*- | 0 0 0 0 0

The confusion matrix associates the class predicted by TiMBL (vertically) with the real class of
the test items given (horizontally). All cells outside the diagonal contain errors of one class being
mistaken for another. For example, the K class (-kje) is mispredicted seven times as class E (-etje).

(The bottom line, labeled with -*-, would contain aggregate counts of classes occuring in the
test data that did not occur in the training data. In the diminutive data this does not occur.)

In general, a confusion matrix allows a more fine-grained analysis of experimental results and
better experimental designs (some parameter settings may work for some classes but not for
others, or some may improve recall, and others precision, e.g.). From such a matrix, not only
accuracy can be derived, but also a number of additional metrics that have become popular in
machine learning, information retrieval, and subsequently also in computational linguistics: re-
call, precision, and their harmonic mean F-score, as well as true positive rate, false positive rate, and
their joint measure AUC in ROC space. The details of these advanced statistics are given in Sec-
tion 5.6.

They can be reported by TiMBL using the +v as and +v cs verbosity options:

> timbl +v as+cs -f dimin.train -t dimin.test

Scores per Value Class:

class | TP FP TN FN precision recall(TPR) FPR F-score

T | 453 1 494 2 0.99780 0.99560 0.00202 0.99670

E | 87 15 835 13 0.85294 0.87000 0.01765 0.86139

J | 346 6 592 6 0.98295 0.98295 0.01003 0.98295

P | 24 1 922 3 0.96000 0.88889 0.00108 0.92308

K | 9 8 926 7 0.52941 0.56250 0.00857 0.54545

F-Score beta=1, microav: 0.967160
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F-Score beta=1, macroav: 0.861914

AUC, microav: 0.980138

AUC, macroav: 0.926060

overall accuracy: 0.967368 (919/950), of which 39 exact matches

There were 5 ties of which 4 (80.00%) were correctly resolved

We hope that this tutorial has made it clear that, once you have coded your data in fixed-length
feature-value patterns, it should be relatively straightforward to get the first results using TiMBL.
You can then experiment with different metrics and algorithms to try and further improve your
results.
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Chapter 5

Memory-based learning algorithms

TiMBL is a program implementing several memory-based learning algorithms. All implemented
algorithms have in common that they store some representation of the training set explicitly in
memory. During testing, new cases are classified by extrapolation from the most similar stored
cases. The main differences among the algorithms incorporated in TiMBL lie in:

• The definition of similarity,

• The way the instances are stored in memory, and

• The way the search through memory is conducted.

In this chapter, various choices for these issues are described. We start in Section 5.1 with a formal
description of the basic memory-based learning algorithm, i.e. a nearest neighbor search. We then
introduce different distance metrics, such as Information Gain weighting, which allows us to deal
with features of differing importance, and the Modified Value Difference metric, which allows us
to make a graded guess of the match between two different symbolic values, and describe the
standard versus three distance-weighted versions of the class voting mechanism of the nearest
neighbor classifier. In Section 5.2, we give a description of various algorithmic optimizations for
nearest neighbor search.

Sections 5.3 to 5.5 describe three variants of the standard nearest neighbor classifier implemented
within TiMBL, that optimize some intrinsic property of the standard algorithm. First, in Sec-
tion 5.3, we describe IGTREE, which replaces the exact nearest neighbor search with a very fast
heuristic that exploits the difference in importance between features. Second, in Section 5.4, we
describe the TRIBL algorithm, which is a hybrid between IGTREE and nearest neighbor search.
Third, Section 5.5 describes the IB2 algorithm, which incrementally and selectively adds instances
to memory during learning.

The chapter is concluded by Section 5.7, which provides an overview of further reading into
theory and applications of memory-based learning to natural language processing tasks.

5.1 Memory-based learning

Memory-based learning is founded on the hypothesis that performance in cognitive tasks is
based on reasoning on the basis of similarity of new situations to stored representations of ear-
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lier experiences, rather than on the application of mental rules abstracted from earlier experiences
(as in rule induction and rule-based processing). The approach has surfaced in different contexts
using a variety of alternative names such as similarity-based, example-based, exemplar-based,
analogical, case-based, instance-based, and lazy learning (Stanfill and Waltz, 1986; Aha, Kibler,
and Albert, 1991; Cost and Salzberg, 1993; Kolodner, 1993; Aha, 1997). Historically, memory-
based learning algorithms are descendants of the k-nearest neighbor (henceforth k-NN) algorithm
(Cover and Hart, 1967; De vij ver and Kittler, 1982; Aha, Kibler, and Albert, 1991).

An MBL system, visualized schematically in Figure 5.1, contains two components: a learning com-
ponent which is memory-based (from which MBL borrows its name), and a performance component
which is similarity-based.

The learning component of MBL is memory-based as it involves adding training instances to
memory (the instance base or case base); it is sometimes referred to as ‘lazy’ as memory storage
is done without abstraction or restructuring. An instance consists of a fixed-length vector of
n feature-value pairs, and an information field containing the classification of that particular
feature-value vector.

In the performance component of an MBL system, the product of the learning component is used
as a basis for mapping input to output; this usually takes the form of performing classification.
During classification, a previously unseen test example is presented to the system. The similarity
between the new instance X and all examples Y in memory is computed using some distance
metric ∆(X,Y ). The extrapolation is done by assigning the most frequent category within the
found set of most similar example(s) (the k-nearest neighbors) as the category of the new test
example. In case of a tie among categories, a tie breaking resolution method is used. This method
is described in subsection 5.1.7.

EXAMPLES

CASESINPUT OUTPUT

Similarity−Based Reasoning

Storage
Computation of Metrics

Memory−Based
Learning
Architecture

Learning

Performance

Figure 5.1: General architecture of an MBL system.
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5.1.1 The Overlap metric

The most basic metric that works for patterns with symbolic features is the Overlap metric1 given
in Equations 5.1 and 5.2; where ∆(X,Y ) is the distance between instances X and Y , represented
by n features, and δ is the distance per feature. The distance between two patterns is simply the
sum of the differences between the features. The k-NN algorithm with this metric is called IB1
(Aha, Kibler, and Albert, 1991).

∆(X,Y ) =

n
∑

i=1

δ(xi, yi) (5.1)

where:

δ(xi, yi) =







abs( xi−yi

maxi−mini
) if numeric, else

0 if xi = yi
1 if xi 6= yi

(5.2)

The major difference with the IB1 algorithm originally proposed by (Aha, Kibler, and Albert,
1991), is that in our version the value of k refers to k-nearest distances rather than k-nearest exam-
ples. With k = 1, for instance, TiMBL’s nearest neighbor set can contain several instances that are
equally distant to the test instance. Arguably, our k-NN kernel could therefore be called k-nearest
distances classification.

Another difference with the original IB1 as well as with other implementations such as k-NN
in the WEKA machine learning toolkit (Witten and Frank, 1999) is the way in which ties are re-
solved in choosing the majority category among the set of nearest neighbors. Since this method
is independent of the distance function we discuss this issue separately in subsection 5.1.7.

Variations on Overlap: Levenshtein and Dice coefficient metrics The Overlap metric is all-
or-nothing. For measuring the similarity between numeric or atomically symbolic values this
may suffice, but there are cases (such as in natural language processing) in which string-valued
feature values occur that can mismatch with other string values in a meaningfully graded way.
For example, the value pair “bathe” and “bathes” only differs in one letter; counting them as
more similar than “bathe” and “rumour”, for example, may be useful for the classification task
at hand. We implemented two additional metrics, Levenshtein distance and the Dice coefficient,
that each provide a graded similarity score between pairs of strings.

Levenshtein distance is a classic edit distance metric (Levenshtein, 1966) that counts the number of
insertions, deletions, and substitutions to transform the one string into the other. In our (dynamic
programming) implementation the three operations count equally heavily. The Dice coefficient
computes the overlap between the occurrences of character bigrams in two strings as in Equa-
tion 5.3, where nxi∩yi is the number of character bigrams (uniquely) occuring both in string value
xi and in string value yi (and where i is the index of the feature as introduced in Equation 5.1)2.
The equation subtracts the similarity from 1, because we assume δ to produce a distance, not a
similarity.

δ(xi, yi) = 1−
2nxi∩yi

nxi
+ nyi

(5.3)

1This metric is also referred to as Hamming distance, Manhattan metric, city-block distance, or L1 metric.
2Strings of length one are not handled by Dice; we back off to Overlap in these cases.
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5.1.2 Information-gain and gain ratio feature weighting

The distance metric in Equation 5.2 straightforwardly counts the number of (mis)matching feature-
values in both patterns. In the absence of information about feature relevance, this is a reasonable
choice. Otherwise, we can add domain knowledge bias to weight or select different features (see
e.g. Cardie (1996) for an application of linguistic bias in a language processing task), or look at
the behavior of features in the set of examples used for training. We can compute statistics about
the relevance of features by looking at which features are good predictors of the class labels. In-
formation Theory gives us a useful tool for measuring feature relevance in this way (Quinlan,
1986; Quinlan, 1993).

Information Gain (IG) weighting looks at each feature in isolation, and measures how much
information it contributes to our knowledge of the correct class label. The Information Gain
of feature i is measured by computing the difference in uncertainty (i.e. entropy) between the
situations without and with knowledge of the value of that feature (Equation 5.4).

wi = H(C)−
∑

v∈Vi

P (v)×H(C|v) (5.4)

Where C is the set of class labels, H(C) = −
∑

c∈C P (c) log2 P (c) is the entropy of the class labels,
Vi is the set of values for feature i, and H(C|v) is the conditional entropy of the subset of the
training examples that have value v on feature i. The probabilities are estimated from relative
frequencies in the training set.

For numeric features, an intermediate step needs to be taken to apply the symbol-based com-
putation of IG. All real values of a numeric features are temporarily discretized into a number
(the default is 20) of intervals. Instances are ranked on their real value, and then spread evenly
over the intervals; each interval contains the same number of instances (i.e., by default, 1/20th
of the total amount of instances). Instances in each of these intervals are then used in the IG
computation as all having the same unordered, symbolic value per group. Note again that this
discretization is only temporary; it is not used in the computation of the distance metric.

It is important to realize that the IG weight is really a probability-weighted average of the infor-
mativity of the different values of the feature. On the one hand, this pre-empts the consideration
of values with low frequency but high informativity. Such values “disappear” in the average. On
the other hand, this also makes the IG weight very robust to estimation problems. Each parame-
ter (weight) is estimated on the whole data set.

Information Gain, however, tends to overestimate the relevance of features with large numbers
of values. Imagine a data set of hospital patients, where one of the available features is a unique
“patient ID number”. This feature will have very high Information Gain, but it does not give
any generalization to new instances. To normalize Information Gain for features with different
numbers of values, Quinlan (Quinlan, 1993) has introduced a normalized version, called Gain
Ratio, which is Information Gain divided by si(i) (split info), the entropy of the feature-values
(Equation 5.6).

wi =
H(C)−

∑

v∈Vi
P (v)×H(C|v)

si(i)
(5.5)

si(i) = −
∑

v∈Vi

P (v) log2 P (v) (5.6)
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The resulting Gain Ratio values can then be used as weights wf in the weighted distance metric
(Equation 5.7)3. The k-NN algorithm with this metric is called IB1-IG (Daelemans and Van den
Bosch, 1992).

∆(X,Y ) =

n
∑

i=1

wi δ(xi, yi) (5.7)

The possibility of automatically determining the relevance of features implies that many differ-
ent and possibly irrelevant features can be added to the feature set. This is a very convenient
methodology if domain knowledge does not constrain the choice enough beforehand, or if we
wish to measure the importance of various information sources experimentally. However, be-
cause IG values are computed for each feature independently, this is not necessarily the best
strategy. Sometimes better results can be obtained by leaving features out than by letting them
in with a low weight. Very redundant features can also be challenging for IB1-IG, because IG
will overestimate their joint relevance. Imagine an informative feature which is duplicated. This
results in an overestimation of IG weight by a factor two, and can lead to accuracy loss, because
the doubled feature will dominate the distance metric.

5.1.3 Chi-squared and shared variance feature weighting

Unfortunately, as White and Liu (1994) have shown, the Gain Ratio measure still has an unwanted
bias towards features with more values. The reason for this is that the Gain Ratio statistic is not
corrected for the number of degrees of freedom of the contingency table of classes and values.
White and Liu (1994) proposed a feature selection measure based on the chi-squared statistic, as
values of this statistic can be compared across conditions with different numbers of degrees of
freedom.

The χ2statistic is computed from the same contingency table as the Information Gain measure by
the following formula (Equation 5.8).

χ2 =
∑

i

∑

j

(Eij −Oij)
2

Eij

(5.8)

where Oij is the observed number of cases with value vi in class cj , i.e. Oij = nij , and Eij is
the expected number of cases which should be in cell (vi, cj) in the contingency table, if the null
hypothesis (of no predictive association between feature and class) is true (Equation 5.9). Let n.j

denote the marginal for class j (i.e. the sum over column j of the table), ni. the marginal for value
i, and n.. the total number of cases (i.e. the sum of all the cells of the contingency table).

Eij =
n.jni.

n..

(5.9)

The χ2statistic is well approximated by the chi-square distribution with ν = (m−1)(n−1) degrees
of freedom, where m is the number of values and n is the number of classes. We can then either
use the χ2values as feature weights in Equation 5.7, or we can explicitly correct for the degrees
of freedom by using the Shared Variance measure (Equation 5.10).

3In a generic use IG refers both to Information Gain and to Gain Ratio throughout this manual. In specifying parame-
ters for the software, the distinction between both needs to be made, because they often result in different behavior.
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SVi =
χ2
i

N × (min(|C|, |Vi|)− 1)
(5.10)

Where |C| and |Vi| are the number of classes and the number of values of feature i, respectively,
and N is the number of instances4. We will refer to these variations of MBL as IB1-χ2 and IB1-SV.

One should keep in mind, that the correspondence to the chi-square distribution generally be-
comes poor if the expected frequencies in the contingency table cells become small. A common
recommendation is that the χ2test cannot be trusted when more than 20% of the expected fre-
quencies are less than 5, or any are less than 1.

Chi-squared and shared variance weights of numeric features are computed via a discretization
preprocessing step (also used with computing IG and GR weights). Values are first discretized
into a number (20 by default) of equally-spaced intervals between the minimum and maximum
values of the feature. These groups are then used as discrete values in computing chi-squared
and shared variance weights.

5.1.4 Modified value difference, Jensen-Shannon divergence, and Jeffrey di-
vergence metrics

The choice of representation for instances in MBL remains the key factor determining the strength
of the approach. The features and categories in NLP tasks are usually represented by symbolic
labels. The metrics that have been described so far, i.e. Overlap and IG Overlap, are limited to
counting exact matches between feature values. This means that all values of a feature are seen
as equally dissimilar. However, if we think of an imaginary task in e.g. the phonetic domain,
we might want to use the information that ’b’ and ’p’ are more similar than ’b’ and ’a’. For
this purpose a metric was defined by Stanfill and Waltz (1986) and further refined by Cost and
Salzberg (1993). It is called the (Modified) Value Difference Metric (MVDM; Equation 5.11), and it
is a method to determine the similarity of the values of a feature by looking at co-occurrence of
values with target classes. For the distance between two values v1, v2 of a feature, we compute
the difference of the conditional distribution of the classes Ci for these values.

δ(v1, v2) =

n
∑

i=1

|P (Ci|v1)− P (Ci|v2)| (5.11)

For computational efficiency, all pairwise δ(v1, v2) values can be precomputed before the actual
nearest neighbor search starts.

Although the MVDM metric does not explicitly compute feature relevance, an implicit feature
weighting effect is present. If features are very informative, their conditional class probabilities
will often be skewed towards a particular class. This implies that on average the δ(v1, v2) will be
large. For uninformative features, on the other hand, the conditional class probabilities will tend
to be closer to the overall class distribution, so that on average the δ(v1, v2) will be very small.

MVDM differs considerably from Overlap based metrics in its composition of the nearest neighbor
sets. Overlap causes an abundance of ties in nearest neighbor position. For example, if the nearest
neighbor is at a distance of one mismatch from the test instance, then the nearest neighbor set
will contain the entire partition of the training set that matches all the other features but contains

4Note that with two classes, the shared variance weights of all features are simply divided by N , and will not be
different from χ2weights.
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any value for the mismatching feature (see Zavrel and Daelemans (1997) for a more detailed
discussion). With the MVDM metric, however, the nearest neighbor set will either contain patterns
which have the value with the lowest δ(v1, v2) in the mismatching position, or MVDM will select a
totally different nearest neighbor which has less exactly matching features, but a smaller distance
in the mismatching features. In sum, this means that the nearest neighbor set is usually much
smaller for MVDM at the same value of k. In NLP tasks we have found it useful to experiment
with values of k larger than one for MVDM, because this re-introduces some of the beneficial
smoothing effects associated with large nearest neighbor sets.

One cautionary note about this metric is connected with data sparsity. In many practical appli-
cations we are confronted with a very limited set of examples, with values occuring only a few
times or once in the whole data set. If two such values occur with the same class, MVDM will
regard them as identical, and if they occur with two different classes their distance will be maxi-
mal. In cases of such extreme behaviour on the basis of low-frequency evidence, it may be safer
to back off to the Overlap metric, where only an exact value match yields zero distance. TiMBL
offers this back-off from MVDM to Overlap through a frequency threshold, that switches from the
MVDM to the Overlap metric when one or both of a pair of matched values occurs fewer times in
the learning material than this threshold.

Jensen-Shannon divergence and Jeffrey divergence are offered as related, but more complex alter-
natives to MVDM. They are both statistical dissimilarity metrics that can be used to compute the
distance between class distributions of two values of the same feature. Functionally they are quite
similar to MVDM as well as to Kullback-Leibler (KL) divergence; Jeffrey divergence and Jensen-
Shannon divergence are both symmetric versions of KL divergence, and symmetry is what we
need for estimating value difference.

First, Jeffrey divergence is best known for its application as a distance function in unsupervised
vector space models, e.g. in image retrieval, where it is applied to histogram vectors. While
MVDM computes a straightforward geometrical distance between two class distribution vectors,
Jeffrey divergence introduces a logarithm term, as seen in Equation 5.12. Jeffrey divergence is a
symmetric variant of Kullback-Leibner distance; the m term given in Equation 5.13 is used for
this purpose.

δ(v1, v2) =

n
∑

i=1

(P (Ci|v1)log
P (Ci|v1)

m
+ P (Ci|v2)log

P (Ci|v2)

m
) (5.12)

m =
P (Ci|v1) + P (Ci|v2)

2
(5.13)

Compared to MVDM, Jeffrey divergence assigns relatively larger distances to value pairs of which
the class distributions are more orthogonal. In other words, it assigns more prominence to zero
probabilities, which in the case of sparse data (e.g, with Zipfian distributions of values) are gen-
erally better estimations than non-zero probabilities. This makes Jeffrey divergence in principle
more robust than MVDM with respect to sparse data.

As with MVDM, TiMBL offers an optional frequency-thresholded back-off from Jeffrey and Jensen-
Shannon divergence to the Overlap metric to further remedy some negative effects due to data
sparseness.
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5.1.5 Dot-product and cosine metrics

When features have numeric or binary values, TiMBL can also compute the distance between two
instances via the dot product (or inner product) of their feature-value vectors. The dot product
(which is higher with better matches) is subsequently inversed to a distance by subtracting it
from the maximum dot product attainable, i.e. that on an exact match. In Equation 5.14 this
maximal dot product is referred to as dotmax.

∆(X,Y ) = dotmax −
n
∑

i=1

wixiyi (5.14)

As with the other distance metrics incorporated in TiMBL, we include the feature weight wi in
the metric. When no weighting is set (-w 0), all weights are set to 1.0, and equation 5.14 reduces
to the normal unweighted dot product.

The dot-product metric is typically used with binary vectors or sparse vectors in general. When
either xi or yi has a zero value, that value pair is not counted in the dot product. Consequently,
the significant deviation from the Overlap metric is that matching values that both have a zero
value do not count here, whereas they count as much as any other value match in the Overlap
metric.

A commonly used variant of the dot product metric, e.g. in information retrieval, is the cosine
metric, which corrects for large differences in the length of the instance vectors. The cosine metric
divides the dot product metric by the product of the length of the two vectors. As with the dot
product, TiMBL converts the cosine metric similarity to a distance by subtracting it from a cosmax

term that is larger than the maximal cosine similarity, as given in Equation 5.15. Again, feature
weighting is included in the formula:

∆(X,Y ) = cosmax −

∑n

i=1
wixiyi

√

∑n

i=1
wix2

i

∑n

i=1
wiy2i

(5.15)

Due to its internal tree structure, TiMBL is not particularly suited to handle feature vectors with
thousands or more features. Many features cause very deep and usually very unbalanced trees,
from which retrieval can be rather inefficient (especially when there is little variance in the feature
weights). Other internal data structures such as inverted indices are typically more suited to these
types of vector spaces. For now, inverted indices are not implemented in TiMBL.

5.1.6 Distance-weighted class voting

The most straightforward method for letting the k nearest neighbors vote on the class of a new
case is the majority voting method, in which the vote of each neighbor receives equal weight, and
the class with the highest number of votes is chosen (or in case of a tie, some tie resolution is
performed, cf. Subsection 5.1.7).

We can see the voting process of the k-NN classifier as an attempt to make an optimal class
decision, given an estimate of the conditional class probabilities in a local region of the data
space. The radius of this region is determined by the distance of the k-furthest neighbor.

Sometimes, if k is small, and the data is very sparse, or the class labels are noisy, the “local” esti-
mate is very unreliable. As it turns out in experimental work, using a larger value of k can often
lead to higher accuracy. The reason for this is that in densely populated regions, with larger k the
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local estimates become more reliable, because they are ”smoother”. However, when the majority
voting method is used, smoothing can easily become oversmoothing in sparser regions of the
same data set. The reason for this is that the radius of the k-NN region can become extended far
beyond the local neighborhood of the query point, but the far neighbors will receive equal in-
fluence as the close neighbors. This can result in classification errors that could easily have been
avoided if the measure of influence would somehow be correlated with the measure of similar-
ity. To remedy this, we have implemented three types of distance weighted voting functions in
TiMBL.

A voting rule in which the votes of different members of the nearest neighbor set are weighted
by a function of their distance to the query, was first proposed by Dudani (1976). In this scheme,
henceforth referred to as IL (for inverse-linear), a neighbor with smaller distance is weighted
more heavily than one with a greater distance: the nearest neighbor gets a weight of 1, the fur-
thest neighbor a weight of 0 and the other weights are scaled linearly to the interval in between
(Dudani (1976), Equation 5.16.).

wj =

{

dk−dj

dk−d1

if dk 6= d1
1 if dk = d1

(5.16)

Where dj is the distance to the query of the j’th nearest neighbor, d1 the distance of the nearest
neighbor, and dk of the furthest (k’th) neighbor.

Dudani (Dudani (1976), eq. 2 and 3) further proposed the inverse distance weight (henceforth
ID). In Equation 5.17 a small constant is usually added to the denominator to avoid division by
zero (Wettschereck, 1994).

wj =
{

1

dj+ǫ (5.17)

Another weighting function considered here is based on the work of Shepard (1987), who ar-
gues for a universal perceptual law which states that the relevance of a previous stimulus for the
generalization to a new stimulus is an exponentially decreasing function of its distance in a psy-
chological space (henceforth ED). This gives the weighed voting function of Equation 5.18, where
α and β are constants determining the slope and the power of the exponential decay function.

wj = e−αd
β

j (5.18)

Note that in Equations 5.17 and 5.18 the weight of the nearest and furthest neighbors and the
slope between them depend on their absolute distance to the query. This assumes that the re-
lationship between absolute distance and the relevance gradient is fixed over different datasets.
This assumption is generally false; even within the same dataset, different feature weighting
metrics can cause very different absolute distances.

Figure 5.2 visualises a part of the curves of ID and ED, the latter with a few varied settings of
α and β. Generally, both distance weighting functions assign highly differing weights for close
neighbors, and less differing weights for more distant neighbors. ID assigns very high votes
(distance weights) to nearest neighbors at distances approaching 0.0 - in effect it assigns absolute
preference to exact matches. In contrast, all ED variants have a vote of 1.0 for exact matches,
and have a shallower curve than the ID curve for higher distances. Higher values of α in the
ED function assign relatively higher weights to exact matches. When β is set to larger values
than 1.0, the ED curve becomes bell-shaped, effectively assigning relatively less different weights
between exact-matching neighbors and near-exact matching instances.
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Figure 5.2: Visualisation of the Inverse Distance weighting function (IL) and three variants of the
Exponential Decay distance weighting function (ED) varying settings of α (1) and β (b).

Following Dudani’s proposal, the benefits of weighted voting for k-NN have been discussed
widely, e.g. (Bailey and Jain, 1978; Morin and Raeside, 1981; MacLeod, Luk, and Titterington,
1987), but mostly from an analytical perspective. With the popularity of Instance-Based Learning
applications, these issues have gained a more practical importance. In his thesis on k-NN classi-
fiers, Wettschereck (1994) cites Dudani, but proceeds to work with Equation 5.17. He tested this
function on a large amount of datasets and found weak evidence for performance increase over
majority voting. An empirical comparison of the discussed weighted voting methods in (Zavrel,
1997) has shown that weighted voting indeed often outperforms unweighted voting, and that
Dudani’s original method (Equation 5.16) mostly outperforms the other two methods. From that
set of experiments, it also seems that Dudani’s method shows its optimal performance at much
larger values of k than the other voting methods.

5.1.7 Tie breaking

Thus far we have described the last step of k-NN classification as taking the majority category
among the set of nearest neighbors, where their vote is either unweighted or weighted by their
distance (subsection 5.1.6). Especially in case of unweighted voting, ties can occur; e.g. of a
set of ten nearest neighbors, five vote for class A, and the other five for B. The procedure for
breaking this tie in the k-NN classifier in TiMBL is as follows. First, the value of the k parameter
is incremented by 1, and the additional nearest neighbors at this new kth distance are added to
the current nearest neighbor set (k is subsequently reset to its user-specified value). If the tie in
the class distribution persists, then the class label is selected with the highest overall occurrence
in the training set. If that is also equal, then the first class is taken that was encountered when
reading the training instance file.

Optionally, TiMBL can be set to avoid ties by making a random choice of a classification from a
class distribution in a nearest-neighbor set, weighted by the distribution of the classes in the set.
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5.1.8 Exemplar weighting

Exemplar weighting in memory-based learning captures the intuition that some instances are
better (more reliable, more typical, more regular) nearest neighbors than others. Classification
accuracy could benefit from giving these instances some priority in the k-NN classification pro-
cess. This idea has been explored in the context of on the one hand classification (Salzberg, 1990;
Zhang, 1992), and on the other hand editing bad instances from memory (Aha, Kibler, and Albert,
1991). Salzberg (1990), as a classic example, uses class-prediction strength: the ratio of the number
of times the instance type is a nearest neighbor of another instance with the same class and the
number of times that the instance type is the nearest neighbor of another instance type regardless
of the class. Another example is typicality as used by Zhang (1992).

Exemplar weights could in principle be used either as weights in the class voting (as distance
weights, cf. Subsection 5.1.6), or as weights in the distance metric (eq. 5.7). TiMBL supports only
the latter type, and in this respect exemplar weighting is not an intrinsic part of TiMBL. TiMBL
does not compute exemplar weighting metrics itself, but only allows users to specify prepro-
cessed exemplar weights with the -s input option. Subsequently, when the distance between
a test instance and a memory instance is computed, TiMBL uses the memory instance’s weight
as follows, where ∆E(X,Y ) is the exemplar-weighted distance between instances X and Y , and
ewX is the exemplar weight of memory instance X :

∆E(X,Y ) =
∆(X,Y )

ewX + ǫ
(5.19)

ǫ is the smallest non-zero number, and is used to avoid division by zero. Exemplar weights
approaching zero yield very large distances; relatively higher values yield relatively smaller dis-
tances.

Note that when a training instance occurs more than once in a training set, TiMBL expects it
to have the same example weight with all occurrences; TiMBL cannot handle different example
weights for the same instance type. TiMBL produces a warning (Warning: deviating exemplar
weight in line #. . .), and uses the first weight found for the instance.

5.2 Indexing optimizations

The discussion of the algorithm and the metrics in the section above is based on a naive imple-
mentation of nearest neighbor search: a flat array of instances which is searched from beginning
to end while computing the similarity of the test instance with each training instance. Such an
implementation, unfortunately, reveals the flip side of the lazy learning coin. Although learning
is very cheap: just storing the instances in memory, the computational price of classification can
become very high for large data sets. The computational cost is proportional to N , the number
of instances in the training set, times f , the number of features. In our current implementation of
IB1 we use tree-based indexing to alleviate these costs.

5.2.1 Tree-based indexing

The tree-based memory indexing operation replaces the flat array by a tree structure. Instances
are stored in the tree as paths from a root node to a leaf, the arcs of the path are the consecutive
feature-values, and the leaf node contains a distribution of classes, i.e. a count of how many times
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which class occurs with this pattern of feature-values. Due to this storage structure, instances
with identical feature-values are collapsed into a single path, and only their separate class in-
formation needs to be stored in the distribution at the leaf node. Many different tokens of a
particular instance type share one path from the root to a leaf node. Moreover, instances which
share a prefix of feature-values, also share a partial path. This reduces storage space (although at
the cost of some book-keeping overhead) and has two implications for nearest neighbor search
efficiency.

First, the tree can be searched top-down very quickly for exact matches. When k = 1, an exact
match (∆(X,Y ) = 0) can never be beaten, so then it is possible to omit any further distance
computations. The shortcut is built into TiMBL, but by default it is not used with k > 1. TiMBL
does, however, offer the possibility to use the shortcut at any value of k, with the command
line switch (+x. Using it can speed up classification radically for some types of data, but with
k > 1, the shortcut is not guaranteed to give the same performance (for better or for worse) as
classification without it.

Second, the distance computation for the nearest neighbor search can re-use partial results for
paths which share prefixes. This re-use of partial results is in the direction from the root to the
leaves of the tree. When we have proceeded to a certain level of the tree, we know how much
similarity (Equation 5.2) can still contribute to the overall distance (Equation 5.1), and discard
whole branches of the tree which will never be able to rise above the partial similarity of the
current least similar nearest neighbor. By doing the search depth first5, the similarity threshold
quickly gets initialized to a good value, so that large parts of the search space can be pruned6.

Disregarding this last constraint on search, the number of feature-value comparisons is equal to
the number of arcs in the tree. Thus if we can find an ordering of the features which produces
more overlap between partial paths, and hence a smaller tree, we can gain both space and time
improvements. An ordering which was found to produce small trees for many of our NLP data
sets is Gain Ratio divided by the number of feature-values (this is the default setting). Through
the --Treeorder=<string> command line switch, however, the user is allowed to experiment
with different orderings. Note that different orderings may only affect classification speed, not
the actual classifications.

5.3 IGTree

Using Information Gain rather than unweighted Overlap distance to define similarity in IB1 im-
proves its performance on several NLP tasks (Daelemans and Van den Bosch, 1992; Van den Bosch
and Daelemans, 1993; Van den Bosch, 1997). The positive effect of Information Gain on perfor-
mance prompted us to develop an alternative approach in which the instance memory is restruc-
tured in such a way that it contains the same information as before, but in a compressed decision
tree structure. We call this algorithm IGTREE (Daelemans, Van den Bosch, and Weijters, 1997) In
this structure, similar to the tree-structured instance base described above, instances are stored
as paths of connected nodes which contain classification information. Nodes are connected via
arcs denoting feature values. Information Gain is used to determine the order in which instance
feature-values are added as arcs to the tree. The reasoning behind this compression is that when
the computation of information gain points to one feature clearly being the most important in
classification, search can be restricted to matching a test instance to those memory instances that
have the same feature-value as the test instance at that feature. Instead of indexing all memory
instances only once on this feature, the instance memory can then be optimized further by ex-

5Suggested by Gert Durieux.
6With the special command line setting --silly=true this tree search shortcut is switched off; as the name of the

setting suggests, this is not recommended, except for explicit speed comparisons.



5.4. THE TRIBL AND TRIBL2 HYBRIDS 35

amining the second most important feature, followed by the third most important feature, etc.
Again, compression is obtained as similar instances share partial paths.

Because IGTREE makes a heuristic approximation of nearest neighbor search by a top down
traversal of the tree in the order of feature relevance, we no longer need to store all the paths. The
idea is that it is not necessary to fully store those feature-values of the instance that have lower
Information Gain than those features which already fully disambiguate the instance classifica-
tion.

Apart from compressing all training instances in the tree structure, the IGTREE algorithm also
stores with each non-terminal node information concerning the most probable or default classi-
fication given the path thus far, according to the bookkeeping information maintained by the
tree construction algorithm. This extra information is essential when processing unknown test
instances. Processing an unknown input involves traversing the tree (i.e., matching all feature-
values of the test instance with arcs in the order of the overall feature Information Gain), and
either retrieving a classification when a leaf is reached (i.e., an exact match was found), or using
the default classification on the last matching non-terminal node if an exact match fails.

In sum, it can be said that in the trade-off between computation during learning and computation
during classification, the IGTREE approach chooses to invest more time in organizing the instance
base using Information Gain and compression, to obtain simplified and faster processing during
classification, as compared to IB1 and IB1-IG.

The generalization accuracy of IGTREE is usually comparable to that of IB1-IG; often slightly
worse, but sometimes even better. The two causes for IGTREE’s surprisingly good accuracies
attained with dramatically faster classification are that (i) most ’unseen’ instances contain large
parts that fully match stored parts of training instances, and (ii) the probabilistic information
stored at non-terminal nodes (i.e., the default classifications) still produces strong ‘best guesses’
when exact matching fails. The difference between the top-down traversal of the tree and pre-
cise nearest neighbor search becomes more pronounced when the differences in informativity
between features are small. In such a case a slightly different weighting would have produced a
switch in the ordering and a completely different tree. The result can be a considerable change
in classification outcomes, and hence also in accuracy. However, we have found in our work on
NLP datasets that when the goal is to obtain a very fast classifier for processing large amounts of
text, the tradeoff between a somewhat lower accuracy against stellar speed increases can be very
attractive.

It should be noted that by design, IGTREE is not suited for numeric features, as it does not use
some type of discretization. If present in data, numbers will simply be treated as literal strings
by IGTREE. Moreover, one should realize that the success of IGTREE is determined by a good
judgement of feature relevance ordering. Hence IGTREE is not to be used with e.g. “no weights”
(-w 0). Also, setting the -k parameter obviously has no effect on IGTREE performance.

5.4 The TRIBL and TRIBL2 hybrids

The application of IGTREE on a number of common machine-learning datasets suggested that it
is not applicable to problems where the relevance of the predictive features cannot be ordered in
a straightforward way, e.g. if the differences in Information Gain are only very small. In those
cases, IB1-IG or even IB1 tend to perform significantly better than IGTREE.

For this reason we have designed TRIBL (Daelemans, Weijters, and Van den Bosch, 1997b) and
TRIBL2 as hybrid combinations of IGTREE and IB1. Both algorithms aim to exploit the trade-off
between (i) optimization of search speed (as in IGTREE), and (ii) maximal generalization ac-
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curacy. They do that by splitting the classification of new instances into a quick decision-tree
(IGTREE) traversal based on the first (most important and most class-disambiguating) features,
followed by a slow but relatively accurate k-NN (IB1) classification based on the remaining less
important features. The difference between TRIBL and TRIBL2 is that the former algorithm fixes
the point in the feature ordering where IGTREE is succeeded by IB1, while TRIBL2 determines
this switching point automatically per classification. We briefly describe both variants.

For TRIBL, a parameter (-q) determines the switching point in the feature ordering from IGTREE

to IB1. A heuristic that we have used with some success is based on average feature information
gain; when the Information Gain of a feature exceeds the average Information Gain of all features
+ one standard deviation of the average, then the feature is used for constructing an IGTREE,
including the computation of defaults on nodes. When the Information Gain of a feature is below
this threshold, and the node is still ambiguous, tree construction halts and the leaf nodes at that
point represent case bases containing subsets of the original training set. During search, the
normal IGTREE search algorithm is used, until the case-base nodes are reached, in which case
regular IB1 nearest neighbor search is used on this sub-case-base.

TRIBL2 does not employ a fixed switching point. Rather, during the classification of an instance
it continues to use IGTREE as long as it finds matching feature values in the weighting-governed
feature ordering. Only when it finds a mismatch it reverts to IB1 classification on all remaining
features. The reasoning behind this mismatch-based switching is that it offers a fairly optimal
minimalisation of the use of IB1; it is only invoked when mismatching occurs, which is the typical
point in which IB1 can improve on decision-tree-style classification, which does not consider
the other potentially matching features in the ordering (Daelemans, Van den Bosch, and Zavrel,
1999).

A final note: as with IGTREE, it does not make sense to use TRIBL and TRIBL2 without feature
weighting, so do not combine TRIBL or TRIBL2 with (-w 0).

5.5 IB2: Incremental editing

In memory-based learning it seems sensible to keep any instance in memory that plays a (poten-
tially) positive role in the correct classification of other instances. Alternatively, when it plays no
role at all, or when it is disruptive for classification, it may be a good idea to discard, or edit it
from memory. On top of not harming or even improving generalization performance, the edit-
ing of instances from memory could also alleviate the practical processing burden of the k-NN
classifier kernel, since it would have less instances to compare new instances to. This potential
double pay-off spawned a distinct line of work on editing in the k-NN classifier quite early Hart
(1968) and Wilson (1972).

TiMBL offers an implementation of one particular editing algorithm called IB2 (Aha, Kibler, and
Albert, 1991), an extension to the basic IB1 algorithm introduced in the same article. IB2 imple-
ments an incremental editing strategy. Starting from a seed memory filled with a certain (usually
small) number of labeled training instances, IB2 adds instances incrementally to memory only
when they are misclassified by the k-NN classifier on the basis of the instances in memory at
that point. These instances are added, since they are assumed to be representatives of a part
of the complete instance space in which they themselves and potentially more nearest-neighbor
instances have a particular class different from the class of neigboring instances already in mem-
ory. The economical idea behind IB2 is that this way typically only instances on the boundaries
of such areas are stored, and not the insides of the areas; the classification of instances that would
be positioned well inside such areas is assumed to be safeguarded by the memorized boundary
instances surrounding it.



5.6. ADVANCED EVALUATION METRICS 37

true class

predicted 

class

TP
true positives

TN
true negatives

FP
false positives

FN
false negatives

positive negative

correct

incorrect

P N

Figure 5.3: Class-specific confusion matrix containing the basic counts used in the advanced
performance metrics.

Although the IB2 may optimize storage considerably, its strategy to store all misclassified in-
stances incrementally makes IB2 sensitive to noise (Aha, Kibler, and Albert, 1991). It is also yet
unclear what the effect is of the size of the seed.

5.6 Advanced evaluation metrics

Aside from accuracy (the percentage of correctly classified test instances), TiMBL offers some
more evaluation metrics that have become common in information retrieval and machine learn-
ing in general, namely precision, recall, and F-score, and ROC-space (with dimensions true posi-
tive rate and false positive rate), and AUC. We describe these metrics in more detail here.

Figure 5.3 displays the general confusion matrix for one class C, splitting all classifications on
a test set into four cells. The TP or true positives cell contains a count of examples that have
class C and are predicted to have this class correctly by the classifier. The FP or false positives
cell contains a count of examples of a different class that the classifier incorrectly classified as C.
The FN or false negatives cell contains examples of class C for which the classifier predicted a
different class label than C. On the basis of these four numbers and the total number of positive
examples P = TP + FN and negative examples N = FP + TN , we can compute the following
performance measures:

Precision = TP
TP+FP

, or the proportional number of times the classifier has correctly made the
decision that some instance has class C.

Recall or True Positive Rate (TPR) = TP
P

, or the proportional number of times an example with
class C in the test data has indeed been classified as class C by the classifier.

False Positive Rate (FPR) = FP
N

, or the proportional number of times an example with a differ-
ent class than C in the test data has been classified as class C by the classifier.

F-score = 2×precision×recall
precision+recall

, or the harmonic mean of precision and recall (Van Rijsbergen, 1979),

is a commonly used metric to summarize precision and recall in one measure. The left part
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Figure 5.4: Precision–recall space with F-score isolines (left), and ROC space with an experimental
outcome marked by the dot, and the outcome’s AUC, the shaded surface between the dot and
coordinates (0, 0), (1, 0), and (1, 1) (right).

of Figure 5.4 shows F-score isolines in the two-dimensional space of recall (x-axis) and pre-
cision (y-axis). The curvature of the isolines is caused by the harmonic aspect of the formula
(in contrast, the normal mean has straight isolines orthogonal to the x = y diagonal), which
penalizes large differences between precision and recall. The isolines could be likened to
height isolines in a map, where the peak of the hill is at the upper right corner of the space.

AUC or area under the curve in the so-called ROC or receiver operator characteristics space (Egan,
1975; Swets, Dawes, and Monahan, 2000), is the surface of the grey area in the right graph
of Figure 5.4. The ROC space is defined by the two dimensions FPR (false positive rate, x-
axis) and TPR (true positive rate, or recall, y-axis). The difference with F-score is that it does
not make use of the statistically unreliable precision metric; rather, it takes into account all
cells of the matrix in Figure 5.3 including the TN (true negative) cell (for a more detailed
description and arguments for using ROC analysis, cf. (Fawcett, 2004)). Its “peak” is in the
upper left corner, at a FPR of zero and a TPR of 1. Rather than using the harmonic mean, it
is common to report on the AUC, area under the classifier’s TPR-FPR curve, where in the
case of a discrete-output classifier such as TIMBL this can be taken to mean the two lines
connecting the experiment’s TPR and FPR to the (0, 0) coordinate and the (1, 1) coordinate,
respectively; the AUC is then the grey area between these points and coordinate (1, 0).

While these advanced statistics can be computed per class, they can also be averaged to produce
a single outcome for a full test set. Common methods for averaging F-scores and AUC scores
are micro-averaging and macro-averaging. In micro-averaging, each class’ F-score or AUC is
weighted proportionally to the frequency of the class in the test set. A macro-average sums the
F-scores or AUCs and divides the total by the number of classes in the training set. In computing
these averages, TiMBL bases itself on the classes in the training set. When a class does not re-occur
in test material, it can have no recall, but it can have precision, hence it is always incorporated in
averages. A class that occurs in test material but not in training material can never be predicted
correctly, and is never included in averages.
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5.7 Applications of TiMBL

This section provides a brief historical overview of work that has used TiMBL as a tool. Much
of this work concerns tasks in natural language processing, but TiMBL has been applied in other
domains as well. For historical background predating the 1990s, see (Daelemans and Van den
Bosch, 2005).

Algorithmic development

As the original user and developer groups, the Tilburg and Antwerp groups have published a
number of papers and articles containing descriptions of the algorithms and specialised met-
rics collected in TiMBL, usually demonstrating their functioning using NLP tasks. The IB1-IG

algorithm was first introduced in (Daelemans and Van den Bosch, 1992) in the context of a com-
parison of memory-based approaches with error-backpropagation learning for a hyphenation
task. Predecessor versions of IGTREE can be found in (Daelemans and Van den Bosch, 1993; Van
den Bosch and Daelemans, 1993) where they are applied to grapheme-to-phoneme conversion.
See (Daelemans, Van den Bosch, and Weijters, 1997) for a description and review of IGTREE and
IB1-IG. TRIBL is described in (Daelemans, Weijters, and Van den Bosch, 1997b).

Experiments with distance-weighted class voting are described in (Zavrel, 1997). Aspects of us-
ing binary-valued (unpacked multi-valued) features are discussed in (Van den Bosch and Zavrel,
2000). Raaijmakers (2000) describes an extension of TiMBL with error-correcting output codes.
Hendrickx and Van den Bosch (2004) report on an experiment to import maximum-entropy
matrices to replace MVDM matrices (Hendrickx and Van den Bosch, 2004), improving over the
maximum-entropy classifier.

Comparisons between memory-based learning and editing variants are reported in (Van den
Bosch, 1999; Daelemans, Van den Bosch, and Zavrel, 1999). A hybrid of TiMBL and the RIPPER

rule-induction algorithm (Cohen, 1995) is described in (Van den Bosch, 2000; Van den Bosch,
2004a). Using TiMBL as a classifier combination method is discussed in (Van Halteren, Zavrel,
and Daelemans, 2001).

Van den Bosch (2004a) presents a search algorithm to find optimal combinations of parameter
settings automatically, given a labeled training set of examples, showing large gains of the default
settings (also of other machine learning algorithms). Parallelization of TiMBL, through splitting
either the training set or the test set in n pieces in shared-memory multi-processor architectures,
is explored in (Van den Bosch and Van der Sloot, 2007).

Applications in morpho-phonology

The memory-based algorithms implemented in the TiMBL package have been targeted to a large
range of Natural Language Processing tasks. Examples of applications in the morpho-phonological
area are hyphenation and syllabification (Daelemans and Van den Bosch, 1992); classifiying phonemes
in speech (Kocsor et al., 2000); assignment of word stress (Daelemans, Gillis, and Durieux, 1994);
grapheme-to-phoneme conversion, (Van den Bosch and Daelemans, 1993; Daelemans and Van
den Bosch, 1996; Canisius, Van den Bosch, and Daelemans, 2006); diminutive formation (Daele-
mans et al., 1998); and morphological analysis (Van den Bosch, Daelemans, and Weijters, 1996;
Van den Bosch and Daelemans, 1999; Canisius, Van den Bosch, and Daelemans, 2006). Although
these examples are applied mostly to Germanic languages (English, Dutch, and German), ap-
plications to other languages with more complicated writing systems or morphologies, or with
limited resources, have also been presented: for example, letter-phoneme conversion in Scottish
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Gaelic (Wolters and Van den Bosch, 1997), morphological analysis of Arabic (Marsi, Van den
Bosch, and Soudi, 2006), or diacritic restoration in languages with a diacritic-rich writing system
(Mihalcea, 2002; De Pauw, Waiganjo, and De Schryver, 2007).

Linguistic and psycholinguistic modelling

Whereas most work using TiMBL has been oriented towards natural language engineering ap-
plications, the linguistic and psycholinguistic relevance of memory-based learning is another
focus of research in Antwerp, Tilburg and elsewhere. Work in this area has been done on stress
assignment in Dutch simplex words (Daelemans, Gillis, and Durieux, 1994; Gillis, Durieux, and
Daelemans, 2000) and English compounds (Plag, Kunter, and Lappe, 2007), reading aloud (Van
den Bosch and Daelemans, 2000), phonological bootstrapping (Durieux and Gillis, 2000), the
prediction of linking morphemes in Dutch (Krott, Baayen, and Schreuder, 2001), morphology
(Eddington, 2000; Eddington, 2003), and the Dutch plural inflection (Keuleers et al., 2007). Van-
dekerckhove, Sandra, and Daelemans (2013) use TiMBL to develop a language bigram model and
use this to explain behavior of patients with a specific impairment that prohibits them to assess
adjective orderings as normal or less felicitous.

A comparison to other analogical methods for linguistics is provided in (Daelemans, Weijters,
and Van den Bosch, 1997a; Daelemans, 2002). Van den Bosch and Daelemans (2013) offer links
to work in psychology on models of human memory, in particular to episodic memory and fast
memory access with global matching models (Clark and Gronlund, 1996).

Applications in syntax and semantics

At the syntactic sentence level TiMBL has been applied to Part-of-Speech tagging (Daelemans
et al., 1996; Zavrel and Daelemans, 1999; Van Halteren, Zavrel, and Daelemans, 2001); PP-
attachment (Zavrel, Daelemans, and Veenstra, 1997); subcategorization (Buchholz, 1998); phrase
chunking (Veenstra, 1998; Tjong Kim Sang and Veenstra, 1999); shallow parsing of English (Daele-
mans, Buchholz, and Veenstra, 1999; Buchholz, Veenstra, and Daelemans, 1999; Yeh, 2000) and
Arabic (Azmi and bin Badia, 2010); clause identification (Orăsan, 2000; Tjong Kim Sang, 2001);
detecting the scope of negation markers and hedge cues (Morante, Liekens, and Daelemans,
2008; Morante and Daelemans, 2009); sentence-boundary detection (Stevenson and Gaizauskas,
2000); and, beyond the sentence level, to co-reference resolution (Preiss, 2002; Mitkov, Evans,
and Orasan, 2002; Hoste, 2005; Klenner and Ailloud, 2008; Wunsch, Kübler, and Cantrell, 2009;
Zhekova and Kübler, 2011).

Memory-based learning has been integrated as a classifier engine in more complex dependency
parsing systems (Nivre, Hall, and Nilsson, 2004; Sagae and Lavie, 2005; Canisius et al., 2006),
and dependency parsing in combination with semantic role labeling (Morante, Van Asch, and
Van den Bosch, 2009).

Other applications

TiMBL has been involved in several subtasks of natural language generation: predicting the
order of prenominal adjectives for generation (Malouf, 2000), article generation (Minnen, Bond,
and Copestake, 2000); preposition generation (Lee and Knutsson, 2008); generating referring ex-
pressions (Hendrickx et al., 2008); and ranking paraphrases of noun compounds (Wubben, 2010).

Memory-based learning has been applied succesfully to lexical semantics, in particular to word
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sense disambiguation (Veenstra et al., 2000; Stevenson and Wilks, 1999; Kokkinakis, 2000; Mi-
halcea, 2002; Hoste et al., 2002; Decadt et al., 2004), but also in other lexical semantic tasks such
as determining noun countability (Baldwin and Bond, 2003), animacy (Orăsan and Evans, 2001),
semantic relations within noun compounds (Kim and Baldwin, 2006; Nastase et al., 2006), and
cross-linguistic word sense disambigation, a subtask of machine translation (Van Gompel, 2010;
Van Gompel and Van den Bosch, 2013; Van Gompel and Van den Bosch, 2014).

As a tool for text mining, TiMBL has been used for named-entity recognition (Buchholz and
Van den Bosch, 2000; Hendrickx and Van den Bosch, 2003; De Meulder and Daelemans, 2003;
Sporleder et al., 2006a; Leveling and Hartrumpf, 2007; Van den Bosch and Bogers, 2013), in-
formation extraction (Zavrel, Berck, and Lavrijssen, 2000; Zavrel and Daelemans, 2003; Ahn,
2006), event extraction (Morante, Van Asch, and Daelemans, 2009), text classification (Spitters,
2000), question classification (Cumbreras, López, and Santiago, 2006; Dridan and Baldwin, 2007),
spam filtering (Androutsopoulos et al., 2000), and authorship attribution (Luyckx and Daele-
mans, 2008; Kestemont and Van Dalen-Oskam, 2009).

In the field of discourse and dialogue, TiMBL has been used for dialogue act classification and
shallow semantic analysis of speech-recognised utterances (Gustafson, Lindberg, and Lunde-
berg, 1999; Krahmer et al., 2001; Van den Bosch, Krahmer, and Swerts, 2001; Lendvai et al., 2002;
Lendvai, Van den Bosch, and Krahmer, 2003a), in disfluency detection in transcribed sponta-
neous speech (Lendvai, Van den Bosch, and Krahmer, 2003b), in classifying ellipsis in dialogue
(Fernández, Ginzburg, and Lappin, 2004), and in classifying errors in answers to reading com-
prehension tasks (Bailey and Meurers, 2008).

Relations to statistical language modeling, in particular the interesting equivalence relations
with back-off smoothing in probabilistic classifiers, are discussed in (Zavrel and Daelemans,
1997). Relations between classification-based word prediction and statistical language model-
ing are identified in (Van den Bosch, 2005; Van den Bosch, 2006; Stehouwer and Van Zaanen,
2009). Next-word prediction with TiMBL has been specifically applied to word completion (Van
den Bosch and Bogers, 2008; Van den Bosch, 2011; Verberne et al., 2012; Stoop and Van den Bosch,
2014).

TiMBL has been shown to be a useful error detector and corrector, such as in the context of error
detection in textual databases (Sporleder et al., 2006b), in detecting dependency parsing annota-
tion errors (Dickinson, 2009), in confusible disambiguation (Stehouwer and Van den Bosch, 2009),
and in preposition and determiner errors (Van den Bosch and Berck, 2012; Van den Bosch and
Berck, 2013).

In machine translation, k-nearest neighbor classification offers a conceptual bridge between
example-based machine translation (EBMT) and statistical MT. Pure memory-based approaches
are described in (Van den Bosch, Stroppa, and Way, 2007; Canisius and Van den Bosch, 2009; Van
den Bosch and Berck, 2009; Van Gompel, Van den Bosch, and Berck, 2009); hybrids with statistical
machine translation are presented in (Stroppa, Van den Bosch, and Way, 2007; Haque et al., 2009;
Haque et al., 2010); sub-sentential paraphrasing using pivot translations is described in (Max,
2009).

Although most of the applications of TiMBL are in the natural language processing and computa-
tional linguistics areas, it is occasionally used in other related domains as well. Examples are the
classification of newborns’ cries (Feier et al., 2014), scaffolded learning by robots (Saunders, Ne-
haniv, and Dautenhahn, 2006), or the detection of clinically important micro-organisms through
an electronic nose (Moens et al., 2006).
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Dissertations and special issue

The first dissertation-length study devoted to the approach was (Van den Bosch, 1997), in which
the approach is compared to alternative learning methods for NLP tasks related to English word
pronunciation (stress assignment, syllabification, morphological analysis, alignment, grapheme-
to-phoneme conversion). TiMBL is also central in the Ph.D. theses of Buchholz (2002), Lendvai
(2004), Hendrickx (2005), Hoste (2005), Keuleers (2008), Canisius (2009), and Vandekerckhove
(2013).

In 1999 a special issue of the Journal for Experimental and Theoretical Artificial Intelligence (Vol. 11(3),
edited by Walter Daelemans) was devoted to Memory-Based Language Processing. The introduc-
tion to this special issue discusses the inspiration sources and alternative developments related
to the memory-based approach taken in TiMBL (Daelemans, 1999).

All Tilburg/Antwerp papers referred to in this section, as well as more recent papers, are available in
electronic form from the ILK home page: http://ilk.uvt.nl and the CLIPS home page:
http://www.clips.ua.ac.be/.



Chapter 6

Software usage and options

6.1 Command line options

The user interacts with TiMBL through the use of command line arguments. When you have
installed TiMBL successfully, and you type timbl at the command line without any further ar-
guments, it will print an overview of the most basic command line options.

TiMBL 6.4.2 (c) ILK 1998 - 2012.

Tilburg Memory Based Learner

Induction of Linguistic Knowledge Research Group, Tilburg University

CLiPS Computational Linguistics Group, University of Antwerp

Mon Apr 23 15:43:26 2012

usage: timbl -f data-file {-t test-file}

or see: timbl -h

for all possible options

If you are satisfied with all of the default settings, you can proceed with just these basics:

-f <datafile> : supplies the name of the file with the training items.

-t <testfile> : supplies the name of the file with the test items.

-h : prints a glossary of all available command line options.

The presence of a training file will make TiMBL pass through the first two phases of its cycle. In
the first phase it examines the contents of the training file, and computes a number of statistics
on it (feature weights etc.). In the second phase the instances from the training file are stored
in memory. If no test file is specified, the program exits, possibly writing some of the results of
learning to files (see below). If there is a test file, the selected classifier, trained on the present
training data, is applied to it, and the results are written to a file the name of which is a combi-
nation of the name of the test file and a code representing the chosen algorithm settings. TiMBL
then reports the percentage of correctly classified test items. The default settings for the clas-
sification phase are: a Memory-Based Learner, with Gain Ratio feature weighting, with k = 1,
and with optimizations for speedy search. If you need to change the settings, because you want
to use a different type of classifier, or because you need to make a trade-off between speed and
memory-use, then you can use the options that are shown using -h. The sections below provide
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a reference to the use of these command line arguments, and they are roughly ordered by the
type of action that the option has effect on. Note that some options (listed with “+/-”) can be
turned on (+) or off (-).

6.1.1 Algorithm and metric selection

-a <n> or <string> : determines the classification algorithm. Possible values are:

0 or IB1 – the IB1 (k-NN) algorithm (default). See Sections 5.1 and 5.2.

1 or IGTREE – IGTREE, decision-tree-based optimization. See Section 5.3.

2 or TRIBL – TRIBL, a hybrid of IB1 and IGTREE. See Section 5.4.

3 or IB2 – IB2, incremental edited memory-based learning. See Section 5.5.

4 or TRIBL2 – TRIBL2, a non-parameteric version of TRIBL. See Section 5.4.

-m <string> : determines which distance metrics are used for each feature. The format of this
string is as follows:
GlobalMetric:MetricRange:MetricRange

Where GlobalMetric is used for alle features except for the ones that are assigned other
metrics by following the restrictions given by :MetricRange. A range can be written
using comma’s for lists, and hyphens for intervals. The metric code can be one of the
following nine:

• O – Overlap (default; see Subsection 5.1.1)

• M – Modified value difference (MVDM; see Subsection 5.1.4)

• J – Jeffrey divergence (see Subsection 5.1.4)

• S – Jensen-Shannon divergence (see Subsection 5.1.4)

• D – Dot product (see Subsection 5.1.5)

• C – Cosine distance (see Subsection 5.1.5)

• N – Numeric (for numeric features; see Subsection 5.1.1)

• E – Euclidean distance (for numeric features; see Subsection 5.1.1)

• L – Levenshtein (see Subsection 5.1.1)

• DC – Dice coefficient (see Subsection 5.1.1)

• I – Ignore (ignore specified features)

For example, -mO:N3:I2,5-7 sets the global metric to overlap, declares the third feature
to be numeric, and ignores features 2 and 5, 6, and 7.

Ignore can be the global metric; it must be followed by a MetricRange string with metric
O, M, J, D, or N specifying in the range which features are not ignored.

-w <n> : chooses between feature-weighting possibilities. The weights are used in the metric
of IB1 and in the ordering of the IGTREE. Possible values are:

-w0 or -w nw – No weighting, i.e. all features have the same importance (weight = 1).

-w1 or -w gr – Gain Ratio weighting (default). See section 5.1.2.

-w2 or -w ig – Information Gain weighting. See section 5.1.2.

-w3 or -w x2 – Chi-squared (χ2) weighting. See section 5.1.3.

-w4 or -w sv – Shared Variance weighting. See section 5.1.3.

-w5 or -w sd – Standard Deviation weighting.
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n=<filename>:<number> or n=<filename> – Instead of the five weight settings above
we can supply a filename to the -w option. This causes TiMBL to read this file and
use its contents as weights. If only <filename> is given as an argument, the file is sup-
posed to contain one list of feature weights for all features. The <filename>:<number>
option assumes that a weights file generated by TiMBL with the -W option (and pos-
sibly edited by the user) is read back in; the number refers to one of the five numbers
above. See section 6.2.2 for a description of the format of weights files.

-k <n> : number of nearest neighbors used for extrapolation. Only applicable in conjunction
with IB1 (-a 0), TRIBL (-a 2), TRIBL2 (-a 4) and IB2 (-a 3). The default is 1. Especially
with the MVDM metric it is often useful to determine a good value larger than 1 for this
parameter (usually an odd number, to avoid ties). Note that due to ties (instances with
exactly the same similarity to the test instance) the number of instances used to extrapolate
might in fact be much larger than this parameter.

-d <val> : The type of class voting weights that are used for extrapolation from the nearest
neighbor set. val can be one of:

• Z : normal majority voting; all neighbors have equal weight (default).

• ID : Inverse Distance weighting. See Section 5.1.6, Equation 5.17.

• IL : Inverse Linear weighting. See Section 5.1.6, Equation 5.16.

• ED:<a>:<b> : Exponential Decay weighting with decay parameters a (α) and b (β).
No spaces are allowed in the string. Parameter b can be left unspecified: ED:<a>

assumes β = 1. The syntax used in previous TiMBL versions (ED<a>) is still supported
but deprecated. See Section 5.1.6, Equation 5.18.

-L <n> : frequency threshold for switching from the MVDM or Jeffrey Divergence to the Over-
lap distance metric. The default is 1 (never switch). When in a pair of matched values one
or both values occur less frequently than n times in the learning material, TiMBL switches
from MVDM or Jeffrey Divergence to Overlap. Higher values of n force TiMBL to use the
Overlap metric more.

Only applicable in conjunction with the MVDM (-mM) and Jeffrey divergence (-mJ) or Jensen-
Shannon divergence (-mS) distance metrics.

-b <n> : determines n (≥ 1), the number of instances, to be taken from the top of the train-
ing file, to act as the bootstrap set of memorized instances before IB2 starts adding new
instances. Only applicable in conjunction with IB2 (-a 3).

-q <n> : n is the TRIBL offset, the index number of the feature (counting from 1) after which
TRIBL should switch from IGTREE to IB1. Only applicable in conjunction with TRIBL (-a
2).

-R <n> : Resolve ties in the classifier randomly, using a random generator with seed n. -R <n>

causes the classification to be based on a random pick (with seed n) of a category according
to the probability distribution in the nearest neighbor set. By default, -R is not used, but
rather the deterministic tie resolution scheme described in Subsection 5.1.1.

-t <@file> : If the filename given after -t starts with ’@’, TiMBL will read commands for
testing from file. This file should contain one set of instructions per line. On each line new
values can be set for the following command line options: -B -d -e -k -L -M -o -p

-Q -R -t -u +/-v -w +/-x +/-%. It is compulsory that each line in file contains a
-t <testfile> argument to specify the name of the test file.

-t <testfile> : the string <testfile> is the literal name of the file with the test items.
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-t leave one out : No test file is read, but testing is done on each pattern of the training file,
by treating each pattern of the training file in turn as a test case (and the whole remainder
of the file as training cases). Only applicable in conjunction with IB1 (-a0).

-t cross validate : An n-fold cross-validation experiment is performed on the basis of n
files (e.g. 1/n partitionings of an original data file). The names of these n files need to be
in a text file (one name per line) which is given as argument of -f. In each fold f = 1 . . . n,
file number f is taken as test set, and the remaining n− 1 files are concatenated to form the
training set. Only applicable in conjunction with IB1 (-a0).

-T <n> : The nth column in the training set of labeled examples contains the label to be pre-
dicted, while all other columns represent the input features. By default, the last column is
assumed to contain the class labels.

6.1.2 Input options

-f <datafile> : the string <datafile> is the literal name of the file with the training items,
or (in conjunction with -t cross validate, the file containing the names of the cross-
validation files.

-F <format> : Force TiMBL to interpret the training and test file as a specific data format.
Possible values for this parameter are: Compact, C4.5, ARFF, Columns, Sparse,

Binary (case-insensitive). The default is that TiMBL guesses the format from the contents
of the first line of the data file. ARFF is not automatically detected. See section 6.2.1 for
description of the data formats and the guessing rules. The Compact format cannot be
used with numeric features.

-l <n> : Feature length. Only applicable with the Compact data format; <n> is the number of
characters used for each feature-value and category symbol.

-i <treefile> : Skip the first two training phases: instead of processing a training file, read
a previously saved (see -I option) instance-base or IGTREE from the file treefile. See
section 6.2.4 for the format of this file.

--matrixin=<filename> : Read value distance metrics (such as MVDM or Jeffrey divergence
matrices written to file with --matrixout=<filename, or from user-generated matrices)
from file filename.

-u <valueclassprobfile> : Replace the automatically computed value-class probability
matrix with the matrices provided in this file.

-P <path> : Specify a path to read the data files from. This path is ignored if the name of the
data file already contains path information.

-s : Use the whitespace-delimited exemplar weights, given after each training instance in
the training file <datafile>, during classification. <testfile> may contain exemplar
weights, but they are not used in classification. If the test file does not have an exem-
plar weights column, you must specify -s1. Exemplar weights can also be ignored (in both
training and test files) by specifying -s0. Does not work simultaneously with --occurrences.

--occurrences={train|test|both} :Use the whitepace-delimited integers, given after each
instances in a training or test file (or both when training and test actions are invoked at
once), as representing the number of occurrences that instance should be counted as. By
default these counts are not given, in which case TiMBL counts every instance as a single
token. Does not work simultaneously with -s.
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6.1.3 Output options

-I <treefile> : After phase two of learning, save the resulting tree-based representation
of the instance-base or IGTREE in a file. This file can later be read back in using the -i

option (see above). For IGTREE this also automatically saves the current weights into
treefile.wgt unless this is overridden by -W. See section 6.2.4 for a description of the
resulting file’s format.

--matrixout=<filename> : Store calculated MVDM or Jeffrey divergence distance metrics in
file filename.

-X <xmlfile> : instead of the proprietary file format written with the -I switch, -X writes
the TiMBL tree into an XML tree in <xmlfile>. This XML file cannot be read back into
TiMBL.

-W <file> : Save the currently used feature-weights in a file.

-U <valueclassprobfile> : Write the automatically computed value-class probability ma-
trix to this file.

-n <file> : Save the feature-value and target category symbols in a C4.5 style “names file”
with the name <file>. Take caution of the fact that TiMBL does not mind creating a file
with ’,’ ’.’ ’|’ and ’:’ values in features; C4.5 will produce errors on this.

-p <n> : Indicate progress during training and testing after every n processed patterns. The
default setting is 100,000.

-e <n> : During testing, compute and print an estimate on how long it will take to classify n
test patterns. Off by default.

+/-v <n> : Verbosity Level; determines how much information is written to the output during
a run. Unless indicated otherwise, this information is written to standard error. The use of
+ turns a given verbosity level on, whereas - turns it off (only useable in non-commandline
contexts, such as client/server communication or -t @testcommandfile). This param-
eter can take on the following values (case-insensitive):

s : work silently (turns off all set verbosity levels).

o : show all options set.

b: show node/branch count and branching factor.

f : show calculated feature weights. (default)

p : show MVDM matrices.

e : show exact matches.

as : show overall advanced statistics (micro and macro averages of F-score and AUC).

cm : show confusion matrix between actual and predicted classes.

cs : show per-class statistics (precision, recall, true positive rate, false positive rate, F-
score, AUC).

di : add the distance of the nearest neighbor to the output file.

db : add class distribution in the nearest neighbor set to the output file.

md : add matching depth and node type (N for non-ending node, L for leaf) to output file.

k : add a summary of class distribution information of all nearest neighbors to the output
file (sets -x)

n : add nearest neigbors to the output file (sets -x)
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You may combine levels using ’+’ e.g. +v p+db or -v o+di.

-G <n> : Normalize class distributions generated by +v db.

0 (zero) : Normalize distributions so that they add up to 1.0

1:<f> : Smooth by adding floating-point f to all class votes (e.g. -G1:1 performs add-
one smoothing).

--Beam=<n> : Limit the number of returned classes and class votes returned by +v db to n.
Default is infinity (no limit).

+/- % : Write the percentage of correctly classified test instances, the number of correctly classi-
fied instances, and the total number of classified instances (one number per line, three lines
in total) to a file with the same name as the output file, but with the suffix “.%”.

-o <filename> : Write the test output to filename. Useful for different runs with the same
settings on the same testfile, where the default output file name would normally be the
same.

-O <path> : Write all output to the path given here. The default is to write all output to the
directory where the test file is located.

-V : Show the TiMBL version number.

6.1.4 Internal representation options

-N <n> : (maximum) number of features. Obligatory for Sparse and Binary formats. When
larger than a pre-defined constant (default 2500), N needs to be set explicitly for all algo-
rithms.

+/-x : turns the shortcut search for exact matches on or off in IB1 (and IB2, TRIBL, and TRIBL2).
The default is off (-x). Turning it on makes IB1 generally faster, but with k > 1 the short-
cut produces different results from a genuine k nearest neighbors search, since absolute
preference is given to the exact match.

-M <n> : Set the maximum number of nearest neighbors printed using the +vn verbosity op-
tion. By default this is set to 500, but when you are interested in the contents of really large
nearest neighbor sets (which is possible with large k or large data sets with few features), n
can be increased up to 100,000.

+/-H : Turn on/off hashing of feature values and class labels in TiMBL trees. Hashing is done
by default, but with short (e.g. one-character) feature values and/or classes less memory is
used when hashing is set off.

+/-D : Store class distributions on all nodes in the TiMBL tree. Default is off (-D). Setting +D

costs memory, and is only necessary when using IGTree in combination with the +v db

verbosity setting (which prints class distributions in the classifier output).

-B <n> : Number of bins used for discretizing numeric data (only used for computing feature
weights).

-c <n> : Clipping (threshold) frequency for prestoring MVDM matrices. Cells in the matrix are
only stored if both feature values occur more than <n> times.

--clones=<n> : Classify a test set using n processors in parallel.
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--Treeorder=<string> : Set the ordering of the TiMBL tree (with IB1 and IB2), i.e., rank
the features according to the metric identified by <string>. The default ordering is G/V
(according to gain ratio divided by the number of values), but some orderings may produce
faster classification. Note that different orderings do not change the classification behavior
of IB1 and IB2. <string> can take the following values:

DO : no ordering (the ordering of the features in the data file is taken)

GRO : gain ratio (eq. 5.5)

IGO : information gain (eq. 5.4)

1/V : 1/V , where V is the number of values

G/V : gain ratio divided by the number of values

I/V : information gain divided by the number of values

X2O : χ2 (eq. 5.8)

X/V : χ2 divided by the number of values

SVO : shared variance (eq. 5.10)

S/V : shared variance divided by the number of values

GxE : gain ratio ×si, where si is the split info of the feature (eq. 5.6)

IxE : information gain ×si

1/S : 1/si

6.1.5 Hidden options

The commandline interface to TiMBL contains several hidden options that have been built in
over time for particular reasons. Some have survived over time, and although their use is not
for the faint-hearted, some may offer interesting functionalities. A small list of disclosed hidden
options follows.

--sloppy={true|false}: in combination with leave-one-out (LOO) testing, this option turns
off all weight recomputation. By default, leaving out one training example out causes all
feature weights, value-class matrices, and derived metrics such as MVDM to be recomputed,
because strictly the example-specific statistics should be absent when it is held out and
classified. --sloppy skips this, causing a significant speedup, and usually slightly better
LOO scores. Use only if your experimental method allows it. Default value is false.

--silly={true|false}: set to true, switches off the optimized nearest-neighbor search in
IB1 and TRIBL. This causes TiMBL to compare all feature values of a test instance to full
paths in the TiMBL tree. This causes TiMBL to slow down dramatically on most datasets.
Setting is available to enable testing the effect of optimized search. Default value is false.

--Diversify: modifies all features weights by subtracting the smallest weight (plus ǫ) from all
weights. The smallest weight thus becomes ǫ. This modification “diversifies” the feature
weights, and was introduced to enhance the effect of DIMBL, the multi-CPU variant of
TiMBL1.

1For DIMBL, see http://ilk.uvt.nl/dimbl
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6.2 File formats

This section describes the format of the input and output files used by TiMBL. Where possible,
the format is illustrated using the classical “objects” data set, which consists of 12 instances of 5
different everyday objects (nut, screw, key, pen, scissors), described by 3 discrete features (size,
shape, and number of holes).

6.2.1 Data files

The training and test sets for the learner consist of descriptions of instances in terms of a fixed
number of feature-values. TiMBL supports a number of different formats for the instances, but
they all have in common that the files should contain one instance per line. The number of
instances is determined automatically, and the format of each instance is inferred from the format
of the first line in the training set. The last feature of the instance is assumed to be the target
category2. Should the guess of the format by TiMBL turn out to be wrong, you can force it to
interpret the data as a particular format by using the -F option. Note that TiMBL, by default,
will interpret features as having symbolic, discrete values. Unless you specify explicitly that certain
features are numeric, using the -m option, TiMBL will interpret numbers as just another string
of characters. If a feature is numeric, its values will be scaled to the interval [0,1] for purposes of
distance computation (see Equation 5.2). The computation of feature weights will be based on a
discretization of the feature.

Once TiMBL has determined the input format, it will skip and complain about all lines in the
input which do not respect this format (e.g. have a different number of feature-values with respect
to that format).

During testing, TiMBL writes the classifications of the test set to an output file. The format of this
output file is by default the same as the input format, with the addition of the predicted category
being appended after the correct category. If we turn on higher levels of verbosity, the output
files will also contain distributions, distances and nearest neighbor sets.

Column format

The column format uses white space as the separator between features. White space is defined as
a sequence of one or more spaces or tab characters. Every instance of white space is interpreted
as a feature separator, so it is not possible to have feature-values containing white space. The
column format is auto-detected when an instance of white space is detected on the first line before
a comma has been encountered. The example data set looks like this in the column format:

small compact 1 nut

small long none screw

small long 1 key

small compact 1 nut

large long 1 key

small compact none screw

small compact 1 nut

large long none pen

large long 2 scissors

large long 1 pen

large other 2 scissors

small other 2 key

2unless the -s or --occurrences options are used, which both assume a final column with numbers; the class is
then the before-last feature.
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C4.5 format

This format is a derivative of the format that is used by the well-known C4.5 decision tree learning
program (Quinlan, 1993). The separator between the features is a comma, and the category (viz.
the last feature on the line) is followed by a period (although this is not mandatory: TiMBL is
robust to missing periods)3. White space within the line is taken literally, so the pattern a, b

c,d will be interpreted as ‘a’,‘ b c’,‘d’. An exception is the class label, which should not
contain any whitespace. When using this format, especially with linguistic data sets or with data
sets containing floating point numbers, one should take special care that commas do not occur as
feature values and that periods do not occur within the category. Note that TiMBL’s C4.5 format
does not require a so called namesfile. However, TiMBL can produce such a file for C4.5 with the
-n option. The C4.5 format is auto-detected when a comma is detected on the first line before
any white space has been encountered. The example data set looks like this in the C4.5 format:

small,compact,1,nut.

small,long,none,screw.

small,long,1,key.

small,compact,1,nut.

large,long,1,key.

small,compact,none,screw.

small,compact,1,nut.

large,long,none,pen.

large,long,2,scissors.

large,long,1,pen.

large,other,2,scissors.

small,other,2,key.

ARFF format

ARFF is a format that is used by the WEKA machine learning workbench (Garner, 1995; Witten
and Frank, 1999)4. Although TiMBL at present does not entirely follow the ARFF specification, it
still tries to do as well as it can in reading this format. The ARFF format is not autodetected, and
needs to be specified on the commanline with -F ARFF.

In ARFF data, the actual data are preceded by a information on feature types, feature names,
and names of values in case of symbolic features. TiMBL ignores all of these lines, and starts
reading data from after the @data statement until the end of the file. Feature-values are supposed
to be separated by commas; white space is deleted entirely, so the pattern a, b c,d will be
interpreted as ‘a’,‘bc’,‘d’. There should be no whitespace in class labels.

% There are 4 attributes.

% There are 12 instances.

% Attribute information: Ints Reals Enum Miss

% ’size’ 0 0 12 0

% ’shape’ 0 0 12 0

% ’n_holes’ 9 0 3 0

% ’class.’ 0 0 12 0

@relation ’example.data’

@attribute ’size’ { small, large}

@attribute ’shape’ { compact, long, other}

@attribute ’n_holes’ { 1, none, 2}

@attribute ’class.’ { nut., screw., key., pen., scissors.}

@data

3The periods after the category are not reproduced in the output
4WEKA is available from the Waikato University Department of Computer Science, http://www.cs.waikato.ac.

nz/˜ml/weka
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small,compact,1,nut.

small,long,none,screw.

small,long,1,key.

small,compact,1,nut.

large,long,1,key.

small,compact,none,screw.

small,compact,1,nut.

large,long,none,pen.

large,long,2,scissors.

large,long,1,pen.

large,other,2,scissors.

small,other,2,key.

Compact format

The compact format is especially useful when dealing with very large data files. Because this
format does not use any feature separators, file size is reduced considerably in some cases. The
price of this is that all features and class labels must be of equal length (in characters) and TiMBL
needs to know beforehand what this length is. You must tell TiMBL by using the -l option. The
compact format is auto-detected when neither of the other formats applies. The same example
data set might look like this in the column format with two characters per feature:

smco1_nu

smlonosc

smlo1_ke

smco1_nu

lalo1_ke

smconosc

smco1_nu

lalonope

lalo2_sc

lalo1_pe

laot2_sc

smot2_ke

Sparse format

The sparse format is relevant for data with features of which a significant portion of the values
is 0.0 (numeric), 0 (binary), or some “null” symbolic value. Storing only the non-null values
typically takes less space on disk.

Consider, for example, a data set in text classification with 10,000 features each representing the
tf*idf weight of a term. It would be uneconomical to store instances as long lines of

0.02, 0.0, 0.0, 0.0, 0.54, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... , 0.01,sports

The Sparse format allows to store such an instance as

(1,0.02)(5,0.54)...(10000,0.01)sports

That is, a sequence of (< index >,< value >) expressions between parentheses each indicating
that the feature number index has value value, with the class label at the end, directly following
the last parenthesis. The feature index is assumed to start at 1. In case of symbolic values, whites-
pace included in the parentheses are considered significant (i.e., part of the values). A case with
only null values can be represented as either ‘class or ,class.
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This option must be specified by the user (-F Sparse); it is not guessed from the data. It must
also be accompanied by a user declaration of the number of features (-N <number>).

Sparse Binary format

The sparse binary format, a simplified version of the Sparse format, is especially useful when
dealing with large numbers of two-valued (binary) features, of which each case only has a very
few active ones, such as e.g. in text categorization. Thus instead of representing a case as:

1,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,1,small.

We can represent it as:

1,8,11,12,18,small.

This format allows one to specify only the index numbers of the active features (indices start at
one), while implicitly assuming that the value for all the remaining features is zero. Because each
case has a different number of active features, we must specify in some other way what the actual
number of features is. This must be done using the -N option. As the format is very similar to
numeric features, it must always be user-declared using -F Binary. The last feature of a line is
always interpreted as being the category string. A case with only zeroes can be represented as
either ‘class or ,class.

6.2.2 Weight files

The feature weights used for computing similarities and for the internal organization of the mem-
ory base can be saved to a file -W. These files can be read back into TiMBL with -w <filename>:<weight
number>, where the weight number refers to the five options in TiMBL. It is also possible to
change these files manually before reading them in – and additionally it is also possible to write
a file from scratch and read this into TiMBL. This allows the experimenter to handcraft feature
weights.

The generic format for the weights file is as follows. The weights file may contain comments on
lines that start with a # character. The other lines contain the number of the feature followed by
its numeric weight. An example of such a file is provided below. The numbering of the weights
starts with 1. In this example, the data set has three features.

# DB Entropy: 2.29248

# Classes: 5

# Lines of data: 12

# Fea. Weight

1 0.765709

2 0.614222

3 0.73584

Weight files written by TiMBL are of the same format, but write all weights in a concatenation,
separated by # lines that carry the abbreviated name of the weight (nw, gr, ig, x2, sv). The follow-
ing example illustrates this format (which can be edited manually, as long as the same number of
lines is kept):
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# DB Entropy: 1.61789

# Classes: 5

# Lines of data: 2999

# nw

# Fea. Weight

1 1

2 1

3 1

#

# gr

# Fea. Weight

1 0.0428445870345557

2 0.185070180760327

3 0.325371814230901

#

# ig

# Fea. Weight

1 0.213887591411729

2 0.669704582861074

3 1.27807624584789

#

# sv

# Fea. Weight

1 0.0762436694064095

2 0.233998145488354

3 0.596896311429044

#

# x2

# Fea. Weight

1 914.619058199289

2 2807.0417532783

3 7160.36815190281

#

6.2.3 Value difference files

Using the MVDM metric, it can sometimes be interesting to inspect the matrix of conditional class
probabilities from Equation 5.11. By using the -U option, we can write the computed matrix to a
file. This way we can see which values are considered to be similar by the metric. For each feature
a row vector is given for each value, of the conditional probabilities of all the classes (columns)
given that value.

targets A, B, C, D, E.

feature # 1 Matrix:

small 0.429 0.286 0.286 0.000 0.000

large 0.000 0.000 0.200 0.400 0.400

feature # 2 Matrix:

compact 0.750 0.250 0.000 0.000 0.000

long 0.000 0.167 0.333 0.333 0.167

other 0.000 0.000 0.500 0.000 0.500

feature # 3 Matrix:

1 0.500 0.000 0.333 0.167 0.000

none 0.000 0.667 0.000 0.333 0.000

2 0.000 0.000 0.333 0.000 0.667

As long as this format is observed, the file can be modified (manually or by substituting other
vector-based representations for the values), and the new matrix can be read in and used with
the MVDM metric with the -u option.
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6.2.4 Tree files

Although the learning phase in TiMBL is relatively fast, it can be useful to store the internal rep-
resentation of the data set both for later usage and for faster subsequent learning. In TiMBL, the
data set is stored internally in a tree structure (see Section 5.2). When using IB1, this tree represen-
tation contains all the training cases as full paths in the tree. When using IGTREE, unambiguous
paths in the tree are pruned before it is used for classification or written to file; on the same data,
IGTREE trees are usually considerably smaller than IB1 trees. In either tree type, the arcs repre-
sent feature values and nodes contain class distribution information. The features are in the same
order throughout the tree. This order is either determined by memory-size considerations in IB1,
or by feature relevance in IGTREE. It can explicitly be manipulated using the -T option.

We strongly advise to refrain from manually editing the tree file. However, the syntax of the tree
file is as follows. First a header consisting of information about the status of the tree, the feature-
ordering (the permutation from the order in the data file to the order in the tree), and the presence
of numeric features is provided5. Subsequently, unless hashing has been set off explicitly (-H),
a legenda is given of numeric hash codes for the class names (one unique integer per class) and
feature value names (one unique integer per value). Subsequently, the tree’s nodes and arcs are
given in a proprietary non-indented bracket notation.

Starting from the root node, each node is denoted by an opening parenthesis “(”, followed by an
integer coding the default class. After this, there is the class distribution list, within curly braces
“{ }”, containing a non-empty list of category codes followed by integer counts. After this comes
an optional comma-separated list of arcs to child nodes, within “[ ]” brackets. An arc is labeled
with a coded feature value. The node that the arc leads to again has a class distribution, and any
number of child nodes pointed to by arcs.

The IB1 tree constructed from our example data set looks as follows:

# Status: complete

# Permutation: < 1, 3, 2 >

# Numeric: .

# Version 4 (Hashed)

#

Classes

1 nut

2 screw

3 key

4 pen

5 scissors

Features

1 small

2 compact

3 1

4 long

5 none

6 large

7 2

8 other

(1{ 1 3, 2 2, 3 3, 4 2, 5 2 }[1(1[3(1[2(1{ 1 3 })

,4(3{ 3 1 })

]

)

,5(2[2(2{ 2 1 })

,4(2{ 2 1 })

]

)

5Although in this header each line starts with ’#’, these lines cannot be seen as comment lines.
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,7(3[8(3{ 3 1 })

]

)

]

)

,6(4[3(3[4(3{ 3 1, 4 1 })

]

)

,5(4[4(4{ 4 1 })

]

)

,7(5[4(5{ 5 1 })

,8(5{ 5 1 })

]

)

]

)

]

)

The corresponding compressed IGTREE version is considerably smaller.

# Status: pruned

# Permutation: < 1, 3, 2 >

# Numeric: .

# Version 4 (Hashed)

#

Classes

1 nut

2 screw

3 key

4 pen

5 scissors

Features

1 small

2 compact

3 1

4 long

5 none

6 large

7 2

8 other

(1{ 1 3, 2 2, 3 3, 4 2, 5 2 }[1(1{ 1 3, 2 2, 3 2 }[3(1{ 1 3, 3 1 }[4(3{ 3 1 })

]

)

,5(2{ 2 2 })

,7(3{ 3 1 })

]

)

,6(4{ 3 1, 4 2, 5 2 }[3(3{ 3 1, 4 1 })

,7(5{ 5 2 })

]

)

]

)

TiMBL tree files generated by versions 1.0 to 3.0 of TiMBL, which do not contain hashed class
and value names, are no longer recognized in current TiMBL versions. Backward compatibility
to trees generated by versions 1.0 to 3.0 is preserved in TiMBL version 4 up to release 4.3.1.
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Orăsan, C. and R. Evans. 2001. Learning to identify animate references. In W. Daelemans and
R. Zajac, editors, Proceedings of the Fifth Workshop on Computational Language Learning, CoNLL-2001,
pages 129–136, Toulouse, France.

Plag, I., G. Kunter, and S. Lappe. 2007. Testing hypotheses about compound stress assignment
in English: a corpus-based investigation. Corpus Linguistics and Lingustic Theory, 3(2):199–232.

Preiss, J. 2002. Anaphora resolution with memory-based learning. In Proceedings of the Fifth
Annual CLUK Research Colloquium, pages 1–9.

Quinlan, J.R. 1986. Induction of decision trees. Machine Learning, 1:81–206.

Quinlan, J.R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.

Raaijmakers, S. 2000. Learning distributed linguistic classes. In Proceedings of the Fourth Confer-
ence on Computational Language Learning and the Second Learning Language in Logic Workshop, pages
55–60, New Brunswick, NJ. ACL.

Sagae, K. and A. Lavie. 2005. A classifier-based parser with linear run-time complexity. In
Proceedings of the Ninth International Workshop on Parsing Technologies, pages 125–132, Vancouver,
Canada.

Salzberg, S. 1990. Learning with nested generalised exemplars. Kluwer Academic Publishers, Nor-
well, MA.

Saunders, J., C. L. Nehaniv, and K. Dautenhahn. 2006. Teaching robots by moulding behavior
and scaffolding the environment. In Proceedings of the 1st ACM SIGCHI/SIGART conference on
Human-robot interaction, pages 118–125. ACM.

Shepard, R.N. 1987. Toward a universal law of generalization for psychological science. Science,
237:1317–1323.

Spitters, M. 2000. Comparing feature sets for learning text categorization. In Proceedings of the
Sixth Conference on Content-Based Multimedia Access (RIAO 2002), pages 1124–1135, Paris, France.

Sporleder, C., M. Van Erp, T. Porcelijn, and A. Van den Bosch. 2006a. Identifying named en-
tities in text databases from the natural history domain. In Proceedings of the Fifth International
Conference on Language Resources and Evaluation, LREC-2006, Trento, Italy.

Sporleder, C., M. Van Erp, T. Porcelijn, and A. Van den Bosch. 2006b. Spotting the ‘odd-one-out’:
Data-driven error detection and correction in textual databases. In Proceedings of the EACL 2006
Workshop on Adaptive Text Extraction and Mining, ATEM-2006, Trento, Italy.

Stanfill, C. and D. Waltz. 1986. Toward memory-based reasoning. Communications of the ACM,
29(12):1213–1228, December.

Stehouwer, H. and A. Van den Bosch. 2009. Putting the t where it belongs: Solving a confusion
problem in Dutch. In S. Verberne, H. van Halteren, and P.-A. Coppen, editors, Computational Lin-
guistics in the Netherlands 2007: Selected Papers from the 18th CLIN Meeting, pages 21–36, Nijmegen,
The Netherlands.

Stehouwer, H. and M. Van Zaanen. 2009. Language models for contextual error detection and
correction. In Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Gram-
matical Inference, pages 41–48, Athens, Greece.

Stevenson, M. and R. Gaizauskas. 2000. Experiments on sentence boundary detection. In Pro-
ceedings of the Sixth Conference on Applied Natural Language Processing and the First Conference of the
North American Chapter of the Association for Computational Linguistics, pages 24–30.



64 References

Stevenson, M. and Y. Wilks. 1999. Combining weak knowledge sources for sense disambigua-
tion. In Proceedings of the International Joint Conference on Artificial Intelligence.

Stoop, W. and A. Van den Bosch. 2014. Using idiolects and sociolects to improve word predic-
tion. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational
Linguistics, pages 318–327, Gothenburg, Sweden, April. Association for Computational Linguis-
tics.

Stroppa, N., A. Van den Bosch, and A. Way. 2007. Exploiting source similarity for SMT using
context-informed features. In A. Way and B. Gawronska, editors, Proceedings of the 11th Interna-
tional Conference on Theoretical Issues in Machine Translation (TMI 2007), pages 231–240, Skövde,
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